5ちゃんねる ★スマホ版★ ■掲示板に戻る■ 全部 1- 最新50  

■ このスレッドは過去ログ倉庫に格納されています

大好き★代数幾何 Part 3

1 :132人目の素数さん:2005/06/27(月) 20:13:26
代数幾何に関する話題なら何でもOK。
現在 スペクトル系列に関する演義が
進行中!

前スレ:
大好き★代数幾何
http://science2.2ch.net/test/read.cgi/math/1065022897/
同 part 2
http://science3.2ch.net/test/read.cgi/math/1070510931/

2 :799:2005/06/27(月) 20:32:30
>>1
そろそろネタなくなってきた
なんか質問ある?

3 :132人目の素数さん:2005/06/27(月) 20:45:21
>>799
荒らすな馬鹿

4 :132人目の素数さん:2005/06/27(月) 20:47:39
位相幾何のほうでは色々なスペクトル系列があるようですが、
それらと代数幾何で用いられるものとの相違点はなんでしょうか?
(素人の発想ですみません。)


5 :799:2005/06/28(火) 09:25:09
代数幾何では2重複体から得られるスペクトル系列を主に使う。
位相幾何では、2重複体も使うが、その他に空間自体のフィルターを
使うケース(例えばSerreのファイバー空間)とフィルター付複体とは
無関係に得られるスペクトル系列(exact coupleを使う)がある。
位相幾何の方がスペクトル系列の勉強には適していると言えるだろう。
前にも書いたけど、ホモロジー代数を真に理解するには位相幾何の知識
は必須だろう。

6 :132人目の素数さん:2005/06/28(火) 12:14:24

代数幾何におけるスペクトル系列の意義とは何ですか?

7 :799:2005/06/28(火) 12:27:10
主に層係数コホモロジー群の(理論上での)計算に使う。
具体的に計算出来なくても、スペクトル系列から有益な情報が
得られる。例えば、前スレの最後で述べたような完全系列が
得られる。

8 :799:2005/06/28(火) 12:30:44
分かってるだろうけど、念のために言うと、>>2は俺じゃない。

9 :799:2005/06/28(火) 12:48:01
前スレの続き。

念のために補足する。
スペクトル系列の一般項 E_r(p,q) において、p と q は対等の関係
にあるわけではない。p のほうが重要だし、全次数 n = p + q も
重要である。もちろん、p, q , n の3者のうち、どれか2つ決まれば
あとの1つも決まる。だが、どちらかというと、p と n の組が重要だ。
例えば、E_r(p,q) から出る微分射の標的が具体的にどうだったかを
思いだすとき、覚えておくのは、p が p + r に移ることと、全次数
n が n + 1 に移ることだけでいい。だが、全次数 n が n + 1 に
移ることは微分射の定義から明らかだから、覚えるほどのことでもない。
しかも、p が p + r に移ることも定義そのもの。
このことから、E_r(p,q) → E_r(p+r,q-r+1) はすぐ出る。
同様に E_r(p-r,q+r-1) → E_r(p,q) もすぐ出る。

10 :799:2005/06/28(火) 13:06:58
スペクトル系列 (E_r(p,q)) の応用において具体的な意味があるのは、
E_1(p,q) と E_2(p,q) だけと言ってもいい。r が3以上の E_r(p,q) は
表にはまず出てこない。だから E_2(p,q) ⇒ H^n のような書き方で
充分なわけだ。このことからも、スペクトル系列の理論というのは
見かけほど複雑なものではないとわかるだろう。

11 :799:2005/06/28(火) 17:48:06
>>9
>p のほうが重要だし、全次数 n = p + q も重要である。

これちょっと変だな。無視してくれ。

12 :132人目の素数さん:2005/06/28(火) 18:06:45
日本数学会が「間違い理論」に代数学賞を献上!

藤原一宏氏の業績
>谷山ー志村予想についてのワイルズの結果をヒルベルト・モジュラー形式に拡張することを試み、
>これについても著しい結果を出している。とくに、テーラー・ワイルズの方法を公理化した可換
>環論的手法は強力であり、すでに多くの研究者によて利用されている。藤原氏のこの方面の研究は
>ヒルベルト・モジュラー形式に止まらず、多変数の保型形式の理論に大きな影響を与えつつある。
http://www.math.wani.osaka-u.ac.jp/group/numberth/algebra/daisugakusho.html#fujiwara

13 :132人目の素数さん:2005/06/28(火) 18:34:12
間違ってても,手法として有用であれば問題ないじゃん

14 :132人目の素数さん:2005/06/28(火) 19:25:41
間違った手法を使ってよければ、間違った結論が
いくらでも導けますが

15 :132人目の素数さん:2005/06/28(火) 19:27:54
いろんな結論(←間違ってるかもしんない)が導けてまうので、
有用なんですなあ〜。www

16 :132人目の素数さん:2005/06/28(火) 19:33:16
そうじゃなくて,結果として間違ってても
手法自体はその後の数学に影響を与えることは
十分にありうる,と書いただけですが

だれも間違った証明でOKだとか
間違った定理を適用してないなんて言ってない

17 :132人目の素数さん:2005/06/28(火) 19:37:47
> 手法自体はその後の数学に影響を与えることは
> 十分にありうる
あくまで可能性ね。それはそうだ。

ただ、禿藁理論は正しいことを前提に使われて
賞も出た。証明は間違ってたけど、手法は有用
だから使われて賞も出た、って話ではないから

18 :132人目の素数さん:2005/06/28(火) 19:38:39
799さんの話が理解できるレベルってどれぐらい?
学部3年には無理だよな・・・
799さん自体、プロの方なのかな?

19 :132人目の素数さん:2005/06/28(火) 19:39:36
禿藁理論は正しいことを前提に使われて賞も出たのであって、
証明は間違ってたけど手法は有用だから使われて賞も出たって
話ではないから

20 :132人目の素数さん:2005/06/28(火) 19:40:40
>>19
「正しい」という前提がそもそも間違ってた訳で…

21 :132人目の素数さん:2005/06/28(火) 20:17:15
伝説の藤原理論も終わりか

22 :132人目の素数さん:2005/06/28(火) 20:23:31
どえらい関手とスペクトル系列についてはどこみたらいいですか?

23 :132人目の素数さん:2005/06/28(火) 22:05:39
どえらい関手とスペクトル系列はどこみたらいいですか?


24 :24:2005/06/28(火) 22:50:42
2=√4



25 :799:2005/06/29(水) 09:22:23
>>18
今迄、加群の基礎的なことしか前提としてない。
圏論のごく初歩の知識もあるとよい。
ただし、代数幾何への応用となると当然それだけではすまないが。
因みに、当然俺はプロではない(プロだったらこんなことしてるヒマあったら論文書くって)。

26 :799:2005/06/29(水) 09:44:35
>>25
>今迄、加群の基礎的なことしか前提としてない。

あとホモロジー代数の初歩、例えば複体の定義だとか、
ホモトピーだとかも仮定している。

27 :799:2005/06/29(水) 09:47:27
出来ればアーベル圏についても知っておいて欲しいんだが、
これはちょっと酷か? アーベル圏については今説明してもいいんだが、
それだと流れが途切れる。

28 :132人目の素数さん:2005/06/29(水) 10:45:05
代数幾何のスペクトル系列といったら、合成関手の導来関手に関する
Grothendieck SS が主だな。

29 :799:2005/06/29(水) 11:16:23
前スレの>>943からの続き

2重複体 K = (K^(p,q)) において、
q < 0 のとき K^(p,q) = 0 とする。
つまり非零のK^(p,q)は上半平面のみにあるとする。
K の第一フィルターは以下のように定義された(前スレの>>942)。

2重複体 K の部分複体 'F^p(K) を以下のように定義する。

i≧p のとき 'F^p(K) の(i,j) 成分は K^(i,j)。
i < p のとき 'F^p(K) の(i,j) 成分は 0。

('F^p(K)) を K の第1フィルターと呼ぶ。

n を固定する。n = i + j で i > n とすると j = n - i < 0
よって、p > n なら 'F^p(K^n) = 0 となる。
ここで、 K^n = ΣK^(i,j) for n = i + j
つまり、K^n = Tot^n(K) である(前スレの>>941)。
よって、Tot(K) の第1フィルターは、正則である
(正則の定義は前スレの>>891)。

Tot(K) の第2フィルターは、一般に正則ではない。

30 :132人目の素数さん:2005/06/29(水) 11:17:23
>>27
Tohoku論文の歴史的意義も含めて、ちょっと聞いてみたいです。

31 :799:2005/06/29(水) 11:23:17
>>28
まあそうなんだけど、実は、2重複体のスペクトル系列も、
超コホモロジーのそれもGrothendieckのスペクトル系列と
見なせる。この辺を意識して、前スレの>>946を書いた。

32 :4:2005/06/29(水) 11:35:54
>>5
ご返答、感謝します。

面白そうなものがヒットしたので、参考までに貼っておきます。
http://www.math.cornell.edu/~hatcher/#anchor1772800
http://www.math.uiuc.edu/K-theory/0245/


33 :799:2005/06/29(水) 11:54:22
>>30
今やると流れが途切れるんで、後でやることにする。

34 :799:2005/06/29(水) 13:58:45
2重複体 K = (K^(p,q)) において、
p < 0 または q < 0 のとき K^(p,q) = 0 とする。
つまり非零のK^(p,q)は第一象限のみにあるとする。
このとき、K の第1フィルターと第2フィルターは共に正則である。

同様に、第3象限にある2重複体の第1フィルターと第2フィルターも
正則である。

35 :799:2005/07/04(月) 09:20:57
Grothendieckのスペクトル系列を説明するのはいいけど、これを代数幾何に
応用するとなると生半可な知識では難しいということに気が付いたw
例えば、連接層の固有射による高次元順像の有限性定理とかSerreの
双対定理に使われるんだけど、これらはスペクトル系列以外の準備が大変。

36 :799:2005/07/04(月) 11:00:17
代数幾何におけるコホモロジー論の主要なものとして以下の4結果がある。

・射影スキームのコホモロジーに関するSerreの定理。
・固有射による連接層の高次順像の連接性。
・形式スキームのコホモロジーとその応用としてのZariskiの定理。
・Serreの双対定理。

37 :799:2005/07/04(月) 11:02:41
上の4つのうち、最初と最後の2つがSerreによるもので、
後はGrothendieckによる。

38 :132人目の素数さん:2005/07/05(火) 15:03:55
アナレンには崩れのゴミ論文がイパーイ

39 :799:2005/07/05(火) 18:21:23
ある環 R 上の左加群のなす圏 R-Mod はアーベル圏となる。
さらに、R-Mod における複体の全体もアーベル圏となることが容易に
わかる(演習問題としよう)。
一般にあるアーベル圏 C における複体の全体はアーベル圏となる。
この圏を Kom(C) と書く。すると Kom(C) の Kom つまり Kom(Kom(C))
が考えられる。これを Kom^2(C) と書こう。これは C における
2重複体のなす圏と見なせる。同様に続けて Kom^n(C) が定義され、
これは C におけるn重複体のなす圏となる。

さて、C に十分多くの単射的対象があると、Kom(C) にも十分多くの
単射的対象がある。この証明は後で述べる。
よって、Kom(C) の任意の対象 K にたいして、単射的対象による分解
X = (X^q) が得られる。つまり、完全系列

0 → K → X^0 → X^1 → X^2 → ...が得られる。

X は、複体を要素とする複体だから2重複体である。
各 X^q のp次成分を X^(p,q) と書こう。q は非負整数だから
2重複体 X = (X^(p,q)) は上半平面にある。

40 :132人目の素数さん:2005/07/05(火) 21:45:44
>コネも作れない、一発凄い仕事もできないじゃあ
>論文10本一流誌3本崩れで終わっちゃうよ、今は。

崩れ博士・PD研究スレッド PART2
http://science3.2ch.net/test/read.cgi/math/1115731497/848

41 :799:2005/07/06(水) 09:16:32
訂正

>>39
>さて、C に十分多くの単射的対象があると、Kom(C) にも十分多くの
>単射的対象がある。

Kom(C) に十分多くの単射的対象があるとは限らない。
Kom+(C) にはある。
ここで、Kom+(C) というのは C における非負の複体全体のなす
アーベル圏である。
よって>>39の K は非負複体であり、その単射的対象による分解
X = (X^(p,q)) は第一象限にある。

42 :132人目の素数さん:2005/07/06(水) 13:51:59
崩れ博士・PD PART3【コネの造りしもの】
http://science3.2ch.net/test/read.cgi/math/1120573848/

43 :132人目の素数さん:2005/07/06(水) 14:05:30
埋めるな死ね

44 :132人目の素数さん:2005/07/07(木) 06:31:22
>>41
>Kom(C) に十分多くの単射的対象があるとは限らない。

やっと気がついたか馬鹿

C が可算直積に付いて閉じていれば
>さて、C に十分多くの単射的対象があると、Kom(C) にも十分多くの
>単射的対象がある。

45 :799:2005/07/07(木) 09:35:53
>>44
>C が可算直積に付いて閉じていれば

これは必要ない。>>41は俺の勘違い。

>やっと気がついたか馬鹿

誤解してるかもしれないので言っておくけど、俺はここで本を書いてるわけ
ではない。2chに気楽に書きなぐってるだけ。間違いがあるのは当たり前。
出来るだけ間違いは訂正するつもりだが、それを急を要する義務とは考えて
いない。

46 :132人目の素数さん:2005/07/07(木) 09:41:40
漏れは兄弟Bコース生。常々、思ってたこと書いちゃいます

The 数学者
給料安い、雑用多い、キモイ
すなわち、人生の負組み代表

47 :132人目の素数さん:2005/07/07(木) 11:31:22
給料でしか人生を図れない馬鹿な奴。アメリカの風潮か。だからアメリカはいまいち数学が駄目なんだな。

48 :132人目の素数さん:2005/07/07(木) 19:06:22
給料でしか人生を図れない馬鹿な奴。学力低下の風潮か。だから若手は数学が駄目なんだな。

49 :132人目の素数さん:2005/07/07(木) 21:15:16
http://www.mym-hp.com/user-cgi-bin/himabbs/tinies.cgi?room=13579
ヘッ

50 :799:2005/07/11(月) 09:42:05
今時スペクトル系列をやるならやっぱり導来圏もやらないとまずいかな。
導来圏を使ってEGAの第3章の後半(第2分冊)を書き直すのもいいかも。
そうすると、このスレまだまだ先は長いな。

51 :799:2005/07/11(月) 10:07:28
>>41
>ここで、Kom+(C) というのは C における非負の複体全体のなす
>アーベル圏である。

通常の記法とあわせるため、これから非負の複体全体のなすアーベル圏
をKom≧0(C)と書くことにする。Kom+(C) は下に有界な複体全体のなす
アーベル圏をあらわすととする。

52 :799:2005/07/11(月) 10:38:10
これから>>39 の証明に入るが、その準備として、複体の写像錘、
分裂複体(split complex)などについて述べる。

K = (K^p) をアーベル圏 C における複体とする。
整数 n を固定したとき、K[n]^p = K^(p+n), d[n]^p = (-1)^n・d^(p+n)
と定義して、複体 K[n] = (K[n]^p, d[n]^p) が得られる。

L^(-n,q) = K^q
p ≠ -n のとき L^(p,q) = 0
と定義すると2重複体 L が得られる。
つまり K を q-軸(つまりY-軸)上に置いたとして、それを -n だけ
平行に移動したものが L である。
L の1重化 Tot(L) が K[n] である。

53 :n-圏:2005/07/12(火) 11:32:18

アーベル圏を対象とするような圏はまたアーベル圏になるんんですか?

54 :799:2005/07/14(木) 13:34:25
f: K → L を複体の射とする。
これから f の写像錘と呼ばれる複体 Con(f) を以下のように定義する。
Con(f)^n = K^(n+1) + L^n とし、
微分射 d^n: Con(f)^n → Con(f)^(n+1) を
(x, y) → (-d(x), -f(x) + d(y)) により定義する。

d: (x, y) → (x', y') としたとき、
x' = -d(x)
y' = -f(x) + d(y)
だから、
これを行列表記で書くと

|x'| = |-d 0| |x|
|y'| |-f d| |y|

となる。

行列の積
|-d 0||-d 0|
|-f d||-f d|
を計算すると
|(-d)^2 0 |
|fd - df d^2|
となり、これは0行列である。
これから、Con(f) は確かに複体であることが分かる。

55 :132人目の素数さん:2005/07/18(月) 12:34:48
何でこんなこと(ホモロジー代数)をやってるかということを忘れないように
言っておくと、これを代数多様体における層係数コホモロジーに応用
するため。じゃあ何で層係数コホモロジーが大事かというと、
連接層Fの大域切断のなす加群Γ(X, F)に幾何的に重要なものが多いから。
例えばある因子Dに極を持つ有理関数のなす加群はこのようなものとなる。
正則微分のなす加群もそう。

56 :799:2005/07/20(水) 17:41:03
写像錘は写像柱(後で述べる)と共に導来圏の理論で重要である。
これらは代数トポロジーの対応する概念と関連付けるのが教育的だが、
それは後回しとして、ここでは代数的な説明をする。

f: K → L をアーベル圏 C における複体の射とする。
f: K → L は(両側に0を補って) Kom(C) における複体つまり
2重複体とみなせる。
これが符号の違いを除いて写像錘 Con(f) となる。
我々の符号規則(前スレの>>941)に適合するようにしたいなら、
以下のように2重複体を定義する。
まず L を縦にして、Y-軸上に置く。
K もY-軸に平行に置くが、X-座標は-1とする。
つまり2重複体 M を
M^(0,q) = L^q
M^(-1,q) = K^q
M^(p,q) = 0 (p ≠ 0, -1)
として、第1微分(=水平微分) d' は -f から得られるものとし:
-f: M^(-1,*) → M^(0,*)
第2微分(=垂直微分) d" は、K , L のそれぞれの微分から得られる
ものとする。
M の一重化 Tot(M) が f の写像錘 Con(f) となる。

57 :132人目の素数さん:2005/07/21(木) 11:30:37
いま桂利行の代数幾何入門
http://www.kyoritsu-pub.co.jp/texthp/sugaku/01569-X.html
よんでます。この本読むのに必要な予備知知識って何ですか?
位相と代数・ガロア理論ぐらいしかしらないけど大丈夫ですか?




58 :132人目の素数さん:2005/07/21(木) 11:58:10
>>57
環上の加群の線形代数も必要だろうな。テンソル積とかHomとか。
ただし、必要な知識は、必要になった時点で仕入れるというのも
実戦的でよい。

59 :57:2005/07/21(木) 23:19:30
>>58
松坂和夫「代数系入門」4章程度で十分?

60 :132人目の素数さん:2005/07/22(金) 10:49:59
>>57
>>59

その本の前書きに必要な予備知識について書いてないのか?

61 :132人目の素数さん:2005/07/22(金) 10:58:13
>>59
一応だいじょうぶなんじゃない?
とりあえず読み進めてみるべし。

62 :132人目の素数さん:2005/07/22(金) 11:13:06
そう。数学書を読むのに必要な予備知識を全部取得してから
というのは効率の悪いやり方。準備だけで終わることに
なりかねない。ただ、これも程度問題で、兼ね合いが難しいのは確か。

63 :132人目の素数さん:2005/07/22(金) 20:36:44
>>62の意見は鋭いと思う今日この頃です(^^;

64 :132人目の素数さん:2005/07/26(火) 21:14:12
>>57
「桂利行の代数幾何入門」 は,面白いですか?

65 :132人目の素数さん:2005/07/27(水) 00:04:30
すいません。代数幾何のスレをいまさらながら見つけました。
少しマルチ気味ですが許してください。

(斉次)n変数多項式による代数超曲面
のホモロジーorコホモロジーもしくはmixed Hodge numberでも良いので、
これらを多項式の次数またはほかのパラメタを使って
表す公式のようなものってありますか?
載っている本or論文とかあったら教えてください。
もしくは、一般の場合は計算されていないのでしょうか?

申し訳ないのですが、代数幾何は初心者です。


66 :132人目の素数さん:2005/07/27(水) 03:11:40
age

67 :132人目の素数さん:2005/07/27(水) 08:59:33
>>65

ヒルゼブルフの「代数幾何学における位相的方法」に超曲面のベッチ数の
計算方法が載っていたと記憶している。参考論文も書いてあったと思う。
最近の論文は知らない。

68 :132人目の素数さん:2005/07/27(水) 13:22:11
>>67
ありがとうございます。
探してみます。

69 :132人目の素数さん:2005/07/27(水) 17:21:32
探すっつっても結構古いよこの本。

70 :132人目の素数さん:2005/07/27(水) 17:36:51
>>65  トーリック多様体の超曲面のホッジ構造なら
http://xxx.yukawa.kyoto-u.ac.jp/PS_cache/alg-geom/pdf/9306/9306011.pdf
射影空間の超曲面の場合だけを知りたければ上の論文の1ページ目に
引用されている論文を参照。


71 :799:2005/07/27(水) 18:31:41
>>54の続き

言い忘れたが、アーベル圏の対象とその射はあたかもある環上の
加群の圏の対象と射のように扱う。無限個の対象を一度に扱う場合、
例えば無限直和を扱う場合などを除けば、このように考えて問題
ないことは、(小さい)アーベル圏のある環上の加群の圏への
埋め込み定理から保障される。

f: K → L を複体の射とする。

α: L → Con(f) を α(y) = (0, y)
β: Con(f) → K[1] を β(x, y) = x
で定義する。

αd(y) = (0, d(y))
dα(y) = (0, d(y))
だから、αは複体の射となる。

K[1]の微分は、K の微分を d としたとき -d となる規約を
思い出そう(>>52)。
βd(x, y) = -d(x)
dβ(x, y) = -d(x)
だから、βも複体の射となる。
よって、、以下の完全列が得られる。

0 → L → Con(f) → K[1] → 0

72 :132人目の素数さん:2005/07/28(木) 13:33:27
>>69
(数学科の)大学図書館にはあるだろう。なければ、その大学はやめたほうがいい。

73 :132人目の素数さん:2005/07/28(木) 13:35:48
>>69
 on demand で出版されているはず。

74 :799:2005/07/28(木) 17:53:32
完全列

0 → L → Con(f) → K[1] → 0

の連結射∂を求めよう。

x を K[1] のサイクル、つまり dx = 0 とする。
β(x, 0) = x で、d(x, 0) = (-d(x), -f(x)) = (0, -f(x))だから
(>>54)、∂[x] = [-f(x)] となる(Part2の>>807を参照)。
ここで、[x] は サイクル x のコホモロジー類を表す。
つまり、連結射∂は符号を無視すれば f から誘導されたものになる
(f も -f も同じ核と像を持つ)。
よって、コホモロジー完全系列

→ H^n(L) → H^n(Con(f)) → H^(n+1)(K) → H^(n+1)(L) →

が得られる。

f がコホモロジー群の同型を誘導すれば(このような f を擬同型と呼ぶ)
H^n(Con(f)) = 0 となる。写像錘 Con(f) の重要性の1つはこの性質から
来ている。

75 :132人目の素数さん:2005/07/30(土) 00:57:02
個誘致と退化ク化について生姜九世でもわかるようにおしえてください

76 :132人目の素数さん:2005/07/31(日) 18:53:56
>>69
和訳も出てましたが。
どうも、公式のようなものは見つかりませんでした。
リーマン・ロッホはあったけど。
もしよければページとか教えて頂けないでしょうか?

77 :132人目の素数さん:2005/07/31(日) 18:57:30
>>70
すみません。
ページが見つからないと出ます。

78 :132人目の素数さん:2005/07/31(日) 20:57:31
>>77
arXiv の alg-geom/9306011

79 :132人目の素数さん:2005/08/01(月) 12:14:42
>>78
どうもありがとうございました。
見つけることが出来ました。
・・・因みにarXivって何なんですか?
論文のリンク集?

80 :132人目の素数さん:2005/08/01(月) 12:20:54
プレプリントサーバじゃねえの
査読前の論文を集めてるところだっけ

81 :132人目の素数さん:2005/08/01(月) 13:47:17
archive

82 :132人目の素数さん:2005/08/04(木) 18:29:25
208をここで待ち伏せしていいのか

83 :132人目の素数さん:2005/08/04(木) 18:49:41
いいけど、今オイラースレに出演中で忙しい。

84 :192@ガロア理論:2005/08/04(木) 20:22:30
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

85 :132人目の素数さん:2005/08/05(金) 15:36:30
来ないね 遅いね

86 :132人目の素数さん:2005/08/05(金) 15:41:40
5次方程式の一般解は求められません。

87 :799-208:2005/08/05(金) 15:47:54
今は虚数乗法を思い出すのに忙しい。

88 :132人目の素数さん:2005/08/05(金) 15:56:24
虚数情報って あれだろ あの ホーキングが垂れてる
いや それは 虚数時間じゃないの
おんなじようなものだよね
情報ってつくと 何となくいかがわしい

89 :799-208:2005/08/05(金) 16:06:30
釣りだろ?

90 :132人目の素数さん:2005/08/05(金) 16:11:52
釣れないね

91 :132人目の素数さん:2005/08/05(金) 16:17:02
虚数乗法って レムニスケートを(1+i)等分するって やつ?

92 :132人目の素数さん:2005/08/05(金) 17:02:40
さっぱり

93 :132人目の素数さん:2005/08/07(日) 11:33:10
>>70
引用の論文は見つかりましたが。
4つもあって、どれだかすら分からんのです。
やっぱり知識が足りないって事でしょうか。
出来ればどの論文だか教えてもらいたいです。

94 :132人目の素数さん:2005/08/08(月) 15:23:41
雷が鳴ったよ 怖いね

95 :132人目の素数さん:2005/08/15(月) 18:29:43
Cartier因子群 → Picard群が全射にならない例ってどんなのがありますか?

96 :132人目の素数さん:2005/08/17(水) 07:06:01
Polish space

97 :132人目の素数さん:2005/08/18(木) 20:23:43
バンドルってなんですか?

98 :132人目の素数さん:2005/08/18(木) 20:39:17
パソコンを買ったときにソフトがバンドルされている
(プレインストールされている)
等と云うのだよ

99 :GiantLeaves ◆6fN.Sojv5w :2005/08/18(木) 20:40:17
talk:>>97 接空間の寄せ集めたものを接バンドルといったり、ファイバーを集めたものをファイバーバンドルといったりするようなやつだ。

誰か、バンドルという言葉の説明頼む。

100 :100:2005/08/19(金) 07:41:16

ゲージ理論の本に書いてあるよ。

101 :132人目の素数さん:2005/08/23(火) 22:10:15
代数幾何の参考書についてお尋ねしたいのですが.
私は超弦理論を研究している若い物理学者(ということにして下さい)なのですが,
数学的な論文を読むと,代数幾何の言葉が使われていることがあって,
勉強できたらいいなあと常々思っています.

そこで,証明などは載っていなくても良いので,全体が見通せるような初学者向け
で,かつ先端的なことまで分かるような講義録・参考書等がありましたら
教えていただきたいのです.

例えば, sheafやderived category などの概念がいまひとつ理解できません.
論文に現れると, vector bundle の section とかに脳内変換して
読んだつもりになってしまいます. Cech cohomology も de Rahm cohomology や
Dolbeult cohomology に置き換えて急場をしのぐ感じです.

102 :132人目の素数さん:2005/08/23(火) 22:11:09
もう少し,自分の数学のレベルとか申告しますと,
物理(超弦理論)で必要な最低限は(物理的に)理解しているつもりです.
具体的には,
de Rahm cohomology や Dolbeult cohomology, index theorem,
equivarent cohomology と localization theorem,
K theory, Morse 理論, Riemann 面の moduli 理論
toric 幾何 や mirror symmetry, GW 不変量などは
物理に必要な範囲では,普通に経路積分を使って
計算したりできると思ってます(修行は足りませんが).

どうかよろしくお願いします.

103 :132人目の素数さん:2005/08/23(火) 22:13:55
>>101-102
なんかスゲ―人が来た・・・スゲ―

104 :132人目の素数さん:2005/08/24(水) 00:00:03
>>101

>例えば, sheafやderived category などの概念がいまひとつ理解できません.
>論文に現れると, vector bundle の section とかに脳内変換して
>読んだつもりになってしまいます

>物理(超弦理論)で必要な最低限は(物理的に)理解しているつもりです.

これが本当なら、読んでいる論文の結論の意味を把握でき、自分の言葉で
再構築できるだろう。

物理には sheafやderived category などでなければ表現できない物など無い。
sheafやderived category などを使えれば理解を整理し易いと云う場合はあろう。
実は、たまたま sheafやderived category などを使える人間が、これで表現して
見たと云う事で、最後の結論の為に必要と云う事は無い。

105 :sage:2005/08/24(水) 10:23:38
>>104さん
もしかして物理の方ですか?
私の実力が低いのは認めますが,だからといって
私が代数幾何の勉強をしてはいけない言うことにはならないでしょう.

例を出しますと(数学の方には未定義の物理用語が混ざっててすみません)
D-braneの最も粗い近似では一方で Fukaya category で, その mirror は
derived category で記述されます.
ある人は, D-brane の物理を理解しようとしたら
必ず derived category を再発見するとまで言います.

もちろん, 普段の研究で D-brane を使って物理をする時は,
(AdS-CFT 対応や gauge 理論の研究, 4D model building 等)
derived category の知識が無くても大抵は間に合います.
でも, 上のように言われると気になるではないですか?
そこで,速成できたらと思ってるわけです.

おっしゃるように再構築が自分でできれば越したことはありません.
skyscraper sheaf が anti D0-brane とかそういった解釈ができるのは
ありがたいものです. しかし, それを自分で全部やると言うのは,時間的にも
能力的にも辛いものがあるのは事実です(他の研究した方が目先の利益に
なりますし).


106 :132人目の素数さん:2005/08/24(水) 10:37:27
さしあたって
Gelfand-Manin の Homological Algebra(の厚い方)がいいんじゃない?

107 :132人目の素数さん:2005/08/24(水) 18:19:34
>>105

derived category は hartshorne の「residues and duality」 springer(絶版) の第1章
sheaf は iversen の「層のコホモロジー」springer (derived categoryでsheafを扱っている)
がいいですよ。
>>106のGelfand-Manin「methods of homological algebra」springer も derived category ですね。
105さん。お返しに数学屋がD-braneの物理を理解するのに適した本を紹介して下さい。


108 :107:2005/08/24(水) 18:29:44
>>105

次の論文も紹介しておきましょう

http://jp.arxiv.org/abs/math.AG/0001045

大サービス

109 :132人目の素数さん:2005/08/24(水) 18:31:53
WeibelのHomological Algebraもderived categoryを扱ってる。
分かりやすいと思った。
ただし、層は詳しくない

110 :132人目の素数さん:2005/08/24(水) 18:48:27
でもなにがどうなって導来圏なんか物理ででてくるんだろ?
そもそもD-braneってなんじゃ?ある種の微分方程式の解みたいなもんかいな?
とかいってみるテスト。

111 :132人目の素数さん:2005/08/24(水) 20:49:37
皆さん情報ありがとうございます.
幾つか見繕ってチャレンジしてみたいと思います.

D-brane と言うのは,その上に gauge 場(例えば holomorphic vector bundle)
が住んでいらっしゃる超曲面でして,よく考えるのは Calabi-Yau 多様体上の
(special) Lagrangian submanifold または holomorphic submanifold に
埋め込まれているものを考えます.
これ(とその上の vector bundle)を分類するのに,色々な方法があるのですが,
例えば derived category of coherent sheaves を使います.

私の当面の目標でもありますが,
http://arxiv.org/abs/hep-th/0403166
(ひょっとすると D-brane に興味ある方の参考にもなるかもしれません)
なんかをすらすら読めるようになりたいと思っています.
spectral sequence とか可換図式とか見ると頭痛がしてくるのですが,
この4章とか分かりやすく書けていると思いますか?

ちなみに, derived category や Fukaya category での分類は物理的には
最低次の近似に過ぎませんので, 最終的にはそれらの "量子補正" が
扱えるようになりたいと言うのは物理屋の要求です.
道は遠いですし,本当に現実を記述するのに必要かどうかはわかりませんが.

112 :132人目の素数さん:2005/08/26(金) 00:13:08
さいきんはみんな物理ばっかりだね


113 :132人目の素数さん:2005/08/26(金) 00:48:58
勤勉な物理屋さんがいるね。おいらもがんばろっと

114 :132人目の素数さん:2005/08/26(金) 08:55:53
What is DG (differential graded) category?

115 :132人目の素数さん:2005/08/26(金) 10:24:34
なんで物理に複素多様体が出てくるの?

116 :132人目の素数さん:2005/08/26(金) 11:16:11
>>111

論文の4章見てみたけど印象としては
D-braneって言ってもたいした数学使ってないんだ
って感じ
わかりやすくは書いてないけど要領よくまとめてある
spectral sequenceの議論はderived category使えば必要なくなるんじゃないかな
この4章程度のことなら岩波基礎数学のホモロジー代数で十分な気がする
この本はわかりやすい

117 :132人目の素数さん:2005/08/26(金) 13:07:59
複素幾何出来るならderived categoryなんて赤ん坊の手をひねるような
もんじゃないの? 少なくともスペクトル系列なんておもちゃみたいなもんだよ。
ホモロジー代数のやっかいなとこは退屈ってだけ(ちと言いすぎだが)。

118 :132人目の素数さん:2005/08/29(月) 00:03:28
Derived Category は柏原Shapiraが最高よ。

119 :57:2005/08/29(月) 00:19:11
おれおれ、おれだよおれ、いま桂利行の代数幾何入門読んでる俺です。
p15 補題1、 3、 13
環Rの素イデアルpは既約イデアルって証明が納得できません。
しかも証明ほとんど3行だし。。。。。。。。。。。。
後今現在やってる事が、論理を追う事は出来るにせよ、
将来的にどういう構造を形成するのか全く見当がつきませんが
それって俺の能力は足りませんか?
はぁ、なんかやるきでねぇ。



120 :132人目の素数さん:2005/08/29(月) 07:41:37
>>119
その本もってないから、「既約イデアル」ってのがよくわからん。√I = I になるイデアルって意味か?
それなら証明は確かに簡単だが。

121 :132人目の素数さん:2005/08/29(月) 09:37:18
>>119

じゃあシャファレビッチは?あれは予備知識あまりいらないよ。
しかも、しっかり代数幾何してる。まあいろいろあたって見るんだな。
相性もあるから。

122 :119:2005/08/29(月) 22:57:58
イデアルaが既約であるとは
a=b∩c(b、cはイデアル)と表されると
a=b,あるいはa=cが成立するという事です。



123 :132人目の素数さん:2005/08/29(月) 23:53:30
このすれみてると日本の数学の将来に不安をおおいに感じる

124 :132人目の素数さん:2005/08/29(月) 23:55:44
質問スレをみて、厨房工房の将来に不安感じる、くらいの間抜けな発言だな

125 :132人目の素数さん:2005/08/30(火) 00:26:31
>>122
その定義に基づくなら
pが素イデアルでp=b∩c、p≠b、b≠cであるとする。
p=b∩c⊂bであるからp≠bによりx∈b\pがとれる。
同様にしてy∈c\pもとれる。すると
xy∈b∩cなのにpは素イデアルだからxはpの元ではない。
これはp=b∩cに反する。
でよくね?

126 :132人目の素数さん:2005/08/30(火) 00:55:43
【選挙】世界経済共同体党又吉イエス氏が千石イエス氏を擁立【唯一神】
http://news18.2ch.net/test/read.cgi/news7/1124359012/

127 :132人目の素数さん:2005/08/30(火) 02:39:17
あの本は余核とか帰納極限とか複素函数論の基本的な知識とか
既知としてあるみたいだから松坂じゃきついんじゃないかな

と超遅レスしてみる

128 :132人目の素数さん:2005/08/30(火) 13:33:51
こんなとこ来ないで自分のペースで勉強するのが一番。2chanellorは所詮数学者にはなれないよ。

129 :132人目の素数さん:2005/08/30(火) 13:42:47
>>128
オマエモナー

ところで、2chanellorじゃなくて2channelorじゃないのか?

130 :132人目の素数さん:2005/08/30(火) 14:31:37
2channelerでしょうよ

131 :132人目の素数さん:2005/08/30(火) 16:19:29
じゃあ2channellerだな

132 :132人目の素数さん:2005/08/30(火) 16:29:46
je 2channelle
tu 2channelles
il 2channelle
nous 2channellons
vous 2channellez
ils 2channellent

ドゥシャネレかニシャネレか

133 :132人目の素数さん:2005/08/30(火) 17:32:00
単数
2channella
2channellae
2channellae
2channellam
2channella

複数
2channellae
2channellarum
2channellis
2channellas
2channellis


134 :132人目の素数さん:2005/08/30(火) 17:34:19
最後“or”で終わるのってどっかの言葉ではあんの?

135 :132人目の素数さん:2005/08/30(火) 17:44:06
>>134
実は日本語にうわっ何をすrqwjgjfがklgor

136 :132人目の素数さん:2005/08/30(火) 17:46:22
senior

137 :132人目の素数さん:2005/08/30(火) 18:10:14
>>135
これがダイイングメッセージになるミステリとかでそうな感じ。
有栖川有栖、“数学板の謎”
とか。

138 :119:2005/08/30(火) 22:03:36
>>125
すみません!その考えでいいと思います。
実は教科書には違う考え方が載っててそれがなんか不備があるとおもってて、
でもなんか別解答考える気力が沸かなくって。。。。。。。。。。。。。。。
でもなんかまたやる気でそうです。。。。。。。。。。。。。。。。。
>>127
そうですか。。。。。。。。集合論はホンと申し訳程度(定期試験で優が出た程度)、
関数論は留数積分やローラン展開程度です。
やっぱリーマン面うんぬんまで行かないとだめですかねぇ?

139 :132人目の素数さん:2005/08/31(水) 05:44:28
桂の代数幾何も松坂の代数なんたらもまじめに読んだことがないのでなんともいえないけど、
桂の代数幾何が一般的な代数幾何の入門書なら、集合論とか関数論に関しては、君の自己申告を信じる限り充分と思う。

ただ、君はかつて>>57で「位相と代数・ガロア理論ぐらいしかしらない」と言っておきながら
>>119のように本当にちゃんと代数を知ってるのかつかみづらい発言もしているので保証は出来ない。

まぁ定期試験がどんなレベルかしらないけど優が来るくらいなら大丈夫だと信じて、
とりあえず代数学、特に環と加群のホモロジー代数あたりをやり直してから再挑戦したほうが良いように見える。

140 :132人目の素数さん:2005/08/31(水) 09:15:21
代数幾何やるなら複素幾何もやらないとなんとかのないコーヒーみたいだろ。
実は俺も複素幾何はよく知らないがw
となると1変数はもちろん多変数複素関数論、超関数論(カレント)、
これらの前提として、ルベーグ積分、線形位相空間論、
他に層コホモロジー、代数トポロジーも必要だなw

141 :132人目の素数さん:2005/08/31(水) 12:49:54
>>138
ちなみに桂の代数幾何ではどうやって証明されてたの?


142 :119:2005/08/31(水) 15:48:34
>>141
pが既約でないとするとp=b∩c(p≠b、p≠c、p⊃b、p⊃c)とかける。
b∩c⊃bcなのでp⊃bcであり、pは素イデアルなので
p⊃b  あるいは p⊃c となる。

まちがってますよね?

143 :132人目の素数さん:2005/08/31(水) 15:49:26
pが既約でないとするとp=b∩c(b≠p、c≠p、b⊃p、c⊃p)とかける。
b∩c⊃bcなのでp⊃bcであり、pは素イデアルなので
p⊃b  あるいは p⊃c となる。

まちがってますよね?

144 :132人目の素数さん:2005/08/31(水) 15:50:06
143が桂のコピー。

145 :132人目の素数さん:2005/08/31(水) 16:02:00
間違ってないよ。

146 :132人目の素数さん:2005/08/31(水) 16:10:22
桂先生も大変だなw

147 :132人目の素数さん:2005/08/31(水) 16:19:23
大変だよ

148 :132人目の素数さん:2005/08/31(水) 16:26:52
>>142
これ見てわかった。キミにはまだその本は早すぎる。
松坂か何か、代数の本を数回読み直したほうがよろし。

ちなみに間違ってると思ったのはb∩c⊃bcのところ

149 :148:2005/08/31(水) 16:28:23
ちなみに間違ってると思ったのはb∩c⊃bcのところ?
最後に?書き忘れたら全然違う意味になった・・・

150 :119:2005/09/01(木) 15:56:04
俺がわからんと思ったのは

p⊃bcであり、pは素イデアルなので
p⊃b  あるいは p⊃c となる。

の論理展開。

151 :132人目の素数さん:2005/09/01(木) 16:47:30
>>150

それが分からないっていうのは、すごく基本的な数学の論理が
わからないってことかもしれないぞ。もしそうならやばいよ。
つまり、背理法とか A OR B の否定が (NOT A) AND (NOT B)
であるとかが分からないと大問題だよ。
または p⊃b の否定は具体的に何かとか。

152 :132人目の素数さん:2005/09/01(木) 17:50:10
>>150
そういうむずかしいことは桂先生にききにいきなさい

153 :132人目の素数さん:2005/09/01(木) 19:18:51
>>150
∃x∈b\p∃y∈c\p⇒∃z∈bc\p
は明らかじゃん。z=xyとすればいいんだから。対偶とったら>>150の理論展開になるべ。

154 :119=福田和也:2005/09/01(木) 22:01:10
あぁ、そっからもう一回背理法か。わかった。
たまに簡単なトコで躓く事って有るじゃない。
何も鬼の首とったよなこといわんでもええのに。


155 :132人目の素数さん:2005/09/02(金) 09:37:20
代数幾何というのは整数論とならんで数学者から怖れられている分野なんだよ。
上で複素幾何に関連して書いたけど生半可な知識じゃとても太刀打ちできない。
当然、知識だけじゃ済まない。

156 :132人目の素数さん:2005/09/02(金) 10:50:33
代数幾何は年取ったら出来ないみたい。
教育か政治に走ってるのばかり。

157 :119:2005/09/02(金) 13:45:28
わかった。俺は代数幾何符号設計希望なんだががんばるよ。

158 :132人目の素数さん:2005/09/02(金) 23:30:19
Weilは一次元版Weil予想(というか、Weilの証明した定理?)の証明のアイデアをGaussの論文を
読んでいる際に得たらしいですが、それはどういった論文なのでしょうか?

159 :132人目の素数さん:2005/09/04(日) 12:27:08
>>158

君は誤解してる。彼は、高次元のWeil予想(Weil予想ってのはもともと高次元)
のアイデアをGaussの論文から得た。
有限体上の対角型方程式 Σ(a_i)(X_i)^m = 0 の解の個数を
計算するのにその論文のアイデアを使った。この解の公式と
a_iを有理整数としたとき上の方程式で定義される複素射影代数多様体の
ベッチ数を比較して、その予想を得た。ベッチ数の計算は、
他の数学者(ドルボーだったかな)に頼んだ。

1次元の合同ゼータに関するリーマン予想の彼の証明は、
イタリアの代数幾何学者カステルヌオーボの代数曲線の代数的対応
に関する不等式(の有限体版)を本質的に使っている。

このようにWeilってのは過去の大数学者のアイデアを利用するのが得意。
彼の学位論文もフェルマーのアイデアを使っている。

160 :132人目の素数さん:2005/09/04(日) 12:46:31
20世紀最高の超秀才だからね。

161 :132人目の素数さん:2005/09/04(日) 19:16:59
>>159
すんません。
本を参照せずに、記憶を頼りに書いてしまいました。

山下さんのグロタンディークの本を読んでいたのですが、ガウスの論文が影響しているのは、
おっしゃるとおりWeil予想のほうでした。

ちなみに、1947-1948年にかけて冬のシカゴで読んでいたそうです。(P.67)

162 :132人目の素数さん:2005/09/05(月) 12:15:50
Claire Voisin no book iizo!!

163 :132人目の素数さん:2005/09/05(月) 13:23:42
>>162
Hodge Theory and Complex Algebraic Geometry
or
Mirror Symmetry?

which one?

164 :132人目の素数さん:2005/09/08(木) 18:42:01
>>162
おいら金無いから、SMF版を購入した。

165 :132人目の素数さん:2005/09/09(金) 13:30:47
Hodge Theory and Complex Algebraic Geometry

166 :132人目の素数さん:2005/09/09(金) 16:58:16
>>164
SMF 版ってなに?

167 :132人目の素数さん:2005/09/10(土) 00:41:21
サドマゾフェティッシュ版

168 :132人目の素数さん:2005/09/12(月) 13:58:33
DG category te nani??

169 :132人目の素数さん:2005/09/13(火) 12:24:55
DMeff-hogehoge tte nani??

170 :132人目の素数さん:2005/09/14(水) 05:01:55

【宇宙の鍵】グロタンディークW【Motifs】
http://science4.2ch.net/test/read.cgi/math/1126626669/

171 :フォンテン:2005/09/15(木) 14:45:17
SMFのPerrin-Riouの本欲しいんだけど誰か300円以下で売ってください

172 :132人目の素数さん:2005/09/15(木) 15:50:28
あの人の研究はp-adic L? つまんね

173 :119:2005/09/20(火) 05:38:55
桂「代数幾何入門」一章読みました。ちょっと穴も有るけど。
ネター環の根基イデアルとアフィン代数多様体の対応関係は
何かこのあとすごいことになりそうなものを感じさせます。
環論での自明な事実を多様体に持ちこむと深い事実に変わるとかでしょうかねぇ〜。
二章 層とコホモロジー 層ってなんでしょう。わけワカメ。
とりあえず計算技術と知識を増やす方法でわかってくるものなんですかねぇ?

174 :132人目の素数さん:2005/09/20(火) 10:27:47
Jacobian予想(二次元, C上)もついに解決ですか。感慨深いですな。
math.AG/0509431

175 :132人目の素数さん:2005/09/20(火) 15:23:59
>>Jacobian予想(二次元, C上)もついに解決ですか。感慨深いですな。
math.AG/0509431


DO NOT TRUST THE PROOF AT ONCE!!!!!!!!!!!!!!
THIS HAS BEEN REPEATED MANY TIMES IN THE HISTORY.

176 :132人目の素数さん:2005/09/20(火) 16:12:23
>>175 "THIS"が何を指しているか不明。要再提出。

177 :132人目の素数さん:2005/09/20(火) 16:31:02
>>173
入門で、層とかコホモロジーとか出てくるのか。。。 難しそうだね。
おれもちょっと興味があるので、わかったところをこんなもんだとか
書いてくれるとうれしい。

178 :132人目の素数さん:2005/09/20(火) 18:49:23
あの本は入門書にしてはしっかりした本なんじゃないかなあ
知らんけど

179 :119:2005/09/21(水) 00:53:58
兎に角手を動かして計算技術を増やしていく方向で。ではでは。

180 :132人目の素数さん:2005/09/21(水) 09:49:45
>二章 層とコホモロジー 層ってなんでしょう。わけワカメ。

(曲線の)リーマンロッホまでいかないと意味はよくわからないだろうな。

181 :132人目の素数さん:2005/09/23(金) 23:14:31
In November 2004, Hochster (2004) sent an email announcing a new proof by Carolyn Dean.
この噂を信じていたがいつのまにやら


182 :132人目の素数さん:2005/09/30(金) 05:08:16
>>173
こういうのが学部一年生だったりするんだよな
灯台兄弟のやつらといったら全く

183 :132人目の素数さん:2005/09/30(金) 05:23:50
一年生なの?
三年生だったりしたらかなり失礼な気がするが

184 :132人目の素数さん:2005/09/30(金) 06:34:48
三年生でも俺からしたらすごいんだよなーorz

185 :132人目の素数さん:2005/10/03(月) 16:06:46
age

186 :132人目の素数さん:2005/10/03(月) 23:04:43
桂「代数幾何入門」って結構良書だよね
EGAとかHartshornとかと比べちゃいかんけど

187 :132人目の素数さん:2005/10/03(月) 23:10:22
そこと比べないなら代数幾何の本を出す意味ないと思うけど

188 :132人目の素数さん:2005/10/03(月) 23:26:33
いや歴史的名著とか言うわけじゃないけどさ
ページ数とか初学者の取っつき易さとかいう問題もあるし

189 :132人目の素数さん:2005/10/15(土) 17:55:56
僕も今、桂の「代数幾何入門」よんでます。
それで質問があるんですが。
構造層の定義が
A^n⊃X:既約な代数的集合
mx:Xの点xに対応したA(X)の極大イデアル
Ox=A(X)mx 点xでの局所化
としたときに
OX(U)=∩Ox (x∈U)
で制限写像は自然なものとする。
とあるのですが
U⊃Vに対してOX(V)⊃OX(U)だから
制限写像rVU:OX(U)→OX(V)はただの包含写像でいいのですか?
たとえば正則関数の芽のなす層などのように定義域の制限などは考えなくていいんですか?

最初は普通に包含写像だとおもってたのですが、そうすると
OX(U)∋fをとり
U⊃Vなるあるひとつの開集合Vにたいして、rVU(f)=0⇒f=0
で層の条件の一つを、これだけで満たしてしまい
普通は開被覆の元すべてに対して考えなければいけない
と思っていたので、本当にこの認識で正しいのか不安になってしまったのです。

長文ですいませんが、だれかお願いします。。

190 :189:2005/10/15(土) 18:03:11
あともうひとつお願いします。
前代数多様体を定義するときに、
突然、X上のk値関数のなす層というものが出てきたんですが。
(Xは位相空間、kは代数的閉体)
これはどういったものですか・・・?
定義域や、制限写像において定義域の制限などは考えているのでしょうか・・・?

191 :132人目の素数さん:2005/10/16(日) 01:22:40
age

192 :132人目の素数さん:2005/10/16(日) 01:24:03
age

193 :132人目の素数さん:2005/10/16(日) 01:26:02
oo

194 :132人目の素数さん:2005/10/17(月) 11:29:49
>>突然、X上のk値関数のなす層というものが出てきたんですが。

Attach to each open affine $U$ of $X$ $O_x(U)$,
the coordinate ring of of an affine variety $U$. This will define the
associated sheaf which called a structure sheaf. Think of the
coordinate ring rather than the underlying space.

195 :132人目の素数さん:2005/10/17(月) 12:15:00
>>189
制限写像はただの包含写像でよい。
正則関数の芽のなす層の制限と同じ意味になるがこれはちょいと
考える必要はある。

rVU(f)=0⇒f=0 たしかになりたつがこれは既約な位相空間て条件が
利いてることに起因することだから一般の場合とちょっと違うということ。

196 :132人目の素数さん:2005/10/17(月) 21:25:01
>>190
「X上のk値関数のなす層」ってのは、X の各開集合 U に U → k なるすべての
関数からなる環を対応させる層、って意味。
これが層になるってのがすぐ分からないようだったら、代数多様体の定義とかやる前に、
一般の層についてちょっと勉強したほうがいいかも。

197 :189:2005/10/18(火) 02:21:26
レスありがとうございます。

>195
>正則関数の芽のなす層の制限と同じ意味になるがこれはちょいと

正則関数の芽のなす層の制限は包含写像ではないですよね?
文章の意味を取り違えていたらすいません。

>196
そう説明があれば層になるのはわかります。
ただX上のk値関数のなす層という言葉だけ出てきたときに、想像で補ったら
誤識してしまうかも知れないと思ったので確認したかったのです。

ありがとうございました

198 :132人目の素数さん:2005/10/19(水) 20:11:28
>>197
環の元としてみた場合切断とその制限はいっしょの元として
表されてる。
もう少し関数体と正則関数のなす層との対応を見直す必要があると思われる。
層の抽象的定義はわかってるようだが具体的な扱いについてよくわかってないように
思える。

199 :132人目の素数さん:2005/10/19(水) 22:16:13
「Bが部分環A上、忠実平坦とする。
このとき、Bが整閉整域ならAもそうである。」

ことを証明してくれ。

200 :200:2005/10/19(水) 22:49:28
200

201 :132人目の素数さん:2005/10/20(木) 19:25:20
age

202 :幾何初心者:2005/10/22(土) 02:49:51
はじめまして。
いきなりで申し訳ないですが、
「Affine and projective geometry」って洋書知っている方いますか?

203 :132人目の素数さん:2005/10/22(土) 03:07:02
これか
ttp://webcat.nii.ac.jp/cgi-bin/shsproc?id=BA26024008
ttp://www.amazon.co.jp/exec/obidos/ASIN/0471113158/qid=1129917810/sr=8-2/ref=sr_8_xs_ap_i2_xgl14/249-0275327-9281906
ttp://www.amazon.com/exec/obidos/tg/detail/-/0471113158/qid=1129917963/sr=8-2/ref=sr_8_xs_ap_i1_xgl14/102-6410228-9712957?v=glance&s=books&n=507846

204 :132人目の素数さん:2005/11/03(木) 17:24:04
永田他「抽象代数幾何」のp208のZariskiMainTheoremの証明する過程での次の主張
「Bが整域、AをBの部分環、A[T]もBの部分環でTはA上超越的元。BはA[T]上整拡大。このとき、Bの任意の素イデアルqはp=A∩q上孤立である。」
を証明するはじめの一行目の次の設定をして良い理由が分からない。

「qがp上極大なイデアルとして・・・」の仮定を設定して良い理由が分からない。
Raynauldの本でも全く同じ記述になっている。

だれかわかっている人がいたら教えてください。

205 :132人目の素数さん:2005/11/03(木) 18:57:46
マルチ

206 :132人目の素数さん:2005/11/04(金) 14:29:01
>>204の記入に誤り。正しくは
「Bが整域、AをBの部分環、A[T]もBの部分環でTはA上超越的元。BはA[T]上整拡大。このとき、Bの任意の素イデアルqはp=A∩q上孤立で 'ない’。」
でした。


207 :132人目の素数さん:2005/11/04(金) 16:17:31
「Bが部分環A上、忠実平坦とする。
このとき、Bが整閉整域ならAもそうである。」

ことを証明してくれ。

Know that $A$ is pure in $B$ and the claim follows from this.

208 :132人目の素数さん:2005/11/04(金) 16:20:30
pure?の定義をギボン

209 :132人目の素数さん:2005/11/04(金) 16:34:54
207のナイヨウはおそらくEGAに書いてるみたいだね

210 :132人目の素数さん:2005/11/04(金) 20:55:13
A⊂Bが忠実平坦って任意のx∈specAに対してBx≠0かつBがA加群として平坦加群
ってことでいいんだよね?A=Z[√5]、B=Z[(1+√5)/2]とかって忠実平坦になるような気が
するんだけど。これって忠実平坦じゃないのかな?Aは整閉整域じゃなくてBはAの
整閉になってんだけど。これ>>207の反例になってない?

211 :210:2005/11/04(金) 21:01:16
しまった。まちがった。忠実の定義まちがってました。吊って来る・・・

212 :132人目の素数さん:2005/11/04(金) 21:52:09

今日永田、宮西、丸山先生の「抽象代数幾何学」借りてきてるんだけど
それに載ってる定理全部みとめれば>>207証明できるな。
まず系1.5,7(p91)
x,x’∈specA、y∈specB、x’⊂xのときy’∈specBをy’⊂yととれる。
と定理3.2.4(p188)
Aが正規⇔任意のx∈specAに対しAxが正規。
をみとめると
仮定から任意のx∈specAに対しy∈specBをx=A∩yとなるようにとれるから
結局AのかわりにAx、BのかわりにByをかんがえれば系1.5.7よりAx⊂Byも忠実平坦。
結局AもBも局所環と仮定してよい。でさらに定理3.2.5(p188)をみとめれば
Aが正規⇔specAがR_1&S_2
だからR_1とS_2をチェックすればいい。R_1については定理3.2.14(p197)より
specBがRi⇒specAもRi
からあきらか。S1のチェックが一番微妙なんだけど
AがS_2⇔任意のdimAx≧2であるx∈specAに対してProfAx≧2。
系1.5.7を再びつかってy∈specBをdimBy≧2、y∩A=xととれる。
仮定からProf_By(By)≧2。そこで定理3.2.12(p194)
をM=Ax、N=Byに適用すると
Prob_By(By)=Prof_Ax(Ax)+Prof_k○By(k○By)で
ここでk○Byは0次元の可換環なのでProf_k○By(k○By)は0。
よってProf_By(By)≧2。
って感じでしめせるみたいだ。しかしおれは上に引用した定理の証明
なにひとつ理解してないけど。

213 :132人目の素数さん:2005/11/04(金) 22:32:59
Serreの正規性の判定条件=「Aが正規⇔specAがR_1&S_2」

214 :132人目の素数さん:2005/11/04(金) 23:28:27
で結局pureってなんだっけ?松村先生の可換環論の教科書でみた記憶が・・・手元にねーよ。

215 :132人目の素数さん:2005/11/04(金) 23:34:56
unmixedのこと?

216 :132人目の素数さん:2005/11/05(土) 01:31:44
もともとRaynauldの8章の最後に手短に結果だけ書いているのはNoetherを仮定していない。それで困っていたのだけど・・・

217 :132人目の素数さん:2005/11/06(日) 01:20:54
Noether仮定してないって・・・まじ?こんなのNoether仮定しないで証明できるんかな?
書き忘れじゃねーの?

218 :132人目の素数さん:2005/11/06(日) 01:44:02
Hensel Ring はネーターを仮定しないよ。
Raynaudの本のp.95、Theorem3を読んでみて。

Aがlocal ring, B:local-ind-etale over Aのとき、次の1)−3)が成り立つ。
1)=「省略」
2=「Bがnormal⇔Aがnormal」はネーターを仮定しない記述。
3)=「Bがネーターであるための必要十分条件はAがネーターであること。そして、そのとき、・・・」
となっている。

だから1)2)はネーターは仮定されてないと判断できる。
また、Raynauldの本の内容は、ネーターを仮定していない上でのHensel環の理論。
ネーターを仮定するときは但し書きが書いてある。

219 :132人目の素数さん:2005/11/06(日) 01:45:56
でも、ネーターを仮定したときの結果から、導かれるかもしれない。

220 :132人目の素数さん:2005/11/06(日) 02:11:12
>>218-219
なるほど。まあNoetherian casesは終わったとしてそっちに帰着できるのかな?

221 :132人目の素数さん:2005/11/06(日) 17:53:31
$A$ is a pure subring of $B$ if the sequence
$0→A○E→ B○E$ is exact for every $A$-module $E$.

Hence Flat→Pure.

Read the article by Keiichi Watanabe in Suugakuno tanoshini for pure subrings.

222 :132人目の素数さん:2005/11/06(日) 19:07:35
tanoshini? 

tanoshimi○

223 :132人目の素数さん:2005/11/06(日) 20:00:28
>>221
これで証明になってんの?

224 :132人目の素数さん:2005/11/06(日) 20:42:42
>>221
Suugakuno tanoshini No.??

225 :132人目の素数さん:2005/11/06(日) 22:46:43
代数幾何のオススメの教科書教えてください。

226 :132人目の素数さん:2005/11/06(日) 23:10:19
EGA?

227 :132人目の素数さん:2005/11/06(日) 23:27:26
良い教科書はない
長すぎるものか厳密でないもののいずれかしか存在してない

228 :132人目の素数さん:2005/11/07(月) 02:06:26
質問です
X:n次元代数多様体
X∋x
k^m⊃U:xのアフィン開近傍
A:Uの座標環
A⊃m:xに対する極大イデアル
Ox=Am:xにおける局所化
mx=mAm:Oxの極大イデアル
としたときに
ベクトル空間としての同型
mx/(mx^2)=m/(m^2)が導かれるとあるのですが、これは何故ですか?

229 :132人目の素数さん:2005/11/07(月) 13:20:12
>>226
Hartshorneの日本語版Vol1〜3がいいと思う。

230 :132人目の素数さん:2005/11/07(月) 13:46:54
ハーツホーンの3っていつ出るの?

231 :132人目の素数さん:2005/11/07(月) 14:02:20
>>228
k=A/m
k=Am/mAm

そして○をA上のテンソル積とすると、
m○k=m/(m^2)
m○k=mx/(mx^2)

232 :132人目の素数さん:2005/11/07(月) 19:08:10
>>225
岩波から最近出たkjの代数幾何(現代数学の基礎の単行本版)

233 :225:2005/11/07(月) 19:12:36
ありがとうございます!
森田先生の「代数概論」と松島先生の「多様体入門」を読んだんですが
Hartshorneは読めるでしょうか?

234 :132人目の素数さん:2005/11/07(月) 20:10:08
>>233
松村「可換環論」が読めればハーツホーンは読める。

235 :132人目の素数さん:2005/11/07(月) 20:27:34
てか普通は平行して読むものだと思うが

236 :132人目の素数さん:2005/11/07(月) 21:01:57
上野謙次さんの代数幾何1〜3も相当良いと思ったけど。

237 :132人目の素数さん:2005/11/07(月) 21:23:31
>>236
それをまとめたのが>>232でしょ

238 :132人目の素数さん:2005/11/07(月) 22:54:47
Red Bookとか

239 :132人目の素数さん:2005/11/08(火) 09:23:33
>>221
これで証明になってんの?


nattemasen.

>>221
Suugakuno tanoshini No.??

saishingou. tashika No.5 ??


240 :132人目の素数さん:2005/11/10(木) 22:00:56
Raynaudの本ってこれ?
 
Algebraic geometry : proceedings of the Japan-France conference held at
Tokyo and Kyoto, October 5-14, 1982 / edited by M. Raynaud and
T. Shioda. -- : gw, : us. -- Springer, 1983. -- (Lecture notes in mathematics ; 1016).

241 :132人目の素数さん:2005/11/10(木) 22:22:46
LNS 169
「Anneaux Locaux Henseliens」

242 :132人目の素数さん:2005/11/10(木) 22:26:08
フラ語・・・いちぬけた

243 :132人目の素数さん:2005/11/11(金) 09:46:19
上野謙次さんの代数幾何1〜3も相当良いと思ったけど。

iizo......... iizo..

244 :132人目の素数さん:2005/11/11(金) 12:08:43
>>242

それがいい。代数幾何で仏語読めなきゃ話にならん。

245 :132人目の素数さん:2005/11/11(金) 17:49:01
だよね

246 :132人目の素数さん:2005/11/11(金) 20:19:42
>>207
 
>Know that $A$ is pure in $B$ and the claim follows from this.
 
この一文はなに?Raynauldの本からとってきたんじゃないの?

247 :132人目の素数さん:2005/11/11(金) 20:32:19
質問です。
A⊂Bが整域、AはNoetherとします。A⊂Bは忠実とします。このときBの部分整域A’を
A⊂A’⊂B、A’もNoether、A⊂A’は忠実、A’⊂Bは平坦
となるようにとれるか?
は正しいですか?反例ありますか?とれたらうれしいんですが反例あるかも
しれません。どうでしょう?

248 :132人目の素数さん:2005/11/11(金) 20:50:40
>>246
この英文は、だれかが英語で書き込みしているのです。

249 :132人目の素数さん:2005/11/11(金) 20:54:08
誰かがってつまり207がです。

250 :132人目の素数さん:2005/11/11(金) 20:56:04
この英文のソースはなんなんだろ?自作?

251 :132人目の素数さん:2005/11/11(金) 21:00:15
>>247
むずい。手がかりがない。
「A⊂Bは忠実」はB:Non-Noetherの場合でも、「SpecB−>SpecAが全者」と同値なのか?

252 :132人目の素数さん:2005/11/11(金) 21:02:05
>>251
それでいいです。おながいします。

253 :132人目の素数さん:2005/11/11(金) 21:08:32
BをA上有限生成部分環(よってネータ)の機能的極限であらわして、・・・
それしか方法はないんじゃないか?

254 :132人目の素数さん:2005/11/11(金) 21:13:40
>>250
数学の楽しみの渡部敬一さんの小論に書いてあるそうな雰囲気の説明だったけど。
確認できていない。

255 :132人目の素数さん:2005/11/11(金) 21:16:14
>>253
でもそれだとNoether性が極限とる段階でくずれてしまうんですよ。

256 :132人目の素数さん:2005/11/11(金) 21:23:43
もちろん極限撮る途中の段階で証明することを考える。

257 :132人目の素数さん:2005/11/11(金) 22:29:17
そのためには何らかの有限生成性(加群として?)が必要になる。

258 :132人目の素数さん:2005/11/12(土) 18:28:30
>>247
あげてみよ。ちなみにAはZ上有限生成聖域、または有限体上の有限生成聖域の
全商体の部分環と仮定してもかまいません。
それと別の話だけど有限拡大整域がかならず平坦になるような整域になるなんか十分条件
とかないすかね。たとえばRが正規整域ならR上の有限拡大整域はかならず平坦になるとか。

259 :247:2005/11/12(土) 21:13:42
age again

260 :132人目の素数さん:2005/11/12(土) 21:14:11


261 :132人目の素数さん:2005/11/14(月) 15:16:36
大胆に予想してみる。
 
 (オレ様の大予想)
 Aが整域のとき
 Aが正規環⇔任意の整域の拡大A⊂Bが平坦
 
反例あるかな?

262 :132人目の素数さん:2005/11/16(水) 13:13:55
(オレ様の大予想)
 Aが整域のとき
 Aが正規環⇔任意の整域の拡大A⊂Bが平坦

Counterexamples are ginen by Segre products in characteristic zero since
they are not big Cohen Macaulay algebras.

263 :132人目の素数さん:2005/11/16(水) 16:07:13
↑すごいね

264 :132人目の素数さん:2005/11/16(水) 17:19:18
あるじぶらぶら
ちんちんぶらぶら

265 :132人目の素数さん:2005/11/16(水) 17:28:19
>>262
具体的にはどうやってつくるの?

266 :132人目の素数さん:2005/11/16(水) 17:37:38
>>262
具体的にはどうやってつくるの?


In dimension 2, every normal local domain domain $R$ has depth 2, which means that $R$ is always, Cohen Macaulay. However, in dimension three, let $R=k[[x,y,z,]]$ where $k$ is any field of characteristic zero and let $K$ be a fraction field of $R$.
Then $R$ is clearly normal since it is a power series ring over $k$.
It is known that the integral closure of $R$ in the algebraic closure of $K$ is not Cohen Macaulay over $R$, and therefore is not flat over $R$. So this is a conunterexample. The proof uses trace map and Segre product.

267 :132人目の素数さん:2005/11/16(水) 17:38:07
>>262
Counterexamplesってどっちのヤジルシの反例?正規⇒CMってdimA=2のときは
成立するってのは聞いたことあるけど。これdimA=2じゃなくても成立すんの?
それともそのSegre Produtってのをつかって次元2、かつ任意の整環の拡大が平坦だけど
CMでないとかいう例ができたりする?

268 :132人目の素数さん:2005/11/16(水) 17:38:26
あ、おそかった。

269 :132人目の素数さん:2005/11/16(水) 17:40:40
>>Counterexamplesってどっちのヤジルシの反例.

⇒ のヤジルシ.

270 :132人目の素数さん:2005/11/16(水) 17:48:37
なるほど。ポイントはR=k[[x,y,z]]、KをRの全商体、K~をKの代数閉体、R~をRのK~内での整閉
という設定のもとで
・R⊂R~はCM射でないことがしられている。
・平坦射⇒CM射もしられてるのでR⊂R~は平坦射ではない。
・一方でRはnormal
か。なるほど。すばらしい。しかし知らんことばっかりだ。いちばんしらないのは
1番目のポイントなんだけどこれはどうやったらわかるの?

271 :132人目の素数さん:2005/11/16(水) 18:13:09
書き方わるかったかな?1番目のポイントって
 
>・R⊂R~はCM射でないことがしられている。
 
のことす。つまりx~∈specR~でx=x~∩RとおくときRxがCMにならないような
x~がとれるということが知られてるということなんだけどこれ何にのってるんすか?
可換環論の人には当たり前すぎて案外に成書にはのってなかったりするっすか?

272 :132人目の素数さん:2005/11/16(水) 18:29:47
話かわるけど可換環の人ってやたらk[[x,y,z]]とかつかいたがるけどあれはなぜ?
k[x,y,z]とそんなにちがうもんなん?

273 :132人目の素数さん:2005/11/16(水) 19:06:48
しまった。CMの定義よみちがえてたことに今気付いた。
f:X→YがCM:⇔f^(-1)(f(x))がCM (∀x)か。いづれにせよどうやってしめすのかわからんけど。

274 :132人目の素数さん:2005/11/16(水) 20:48:56
>>272
正則関数と多項式くらい違うよ。

275 :132人目の素数さん:2005/11/16(水) 20:58:08
あげてみる。

276 :132人目の素数さん:2005/11/16(水) 21:14:05
>>270わかんね。R⊂R~が平坦でないってことはあるR上の有限拡大R⊂S⊂R~が存在して
R⊂Sが平坦じゃないってことだよね。しかもSはk[[x,y,z]]の商体の有限次代数拡大Lにおける
Rの整閉と仮定していいし。そんなので平坦じゃないなんてことがあるの?そんなSって
R-freeになるような気がするんだけど。

277 :276:2005/11/16(水) 22:20:03
ごめん。言葉足らずだった。正確には任意のy∈specS、x=y∩Rに対して
SyはRx上freeな感じがする、だ。もしそうならSyはRx上平坦でそれが任意のy∈specSで
いえるならSはR上平坦なはず。RとかSとかはNoetherだし。後半の議論は普通の可換環論の入門書にのってる
レベルの議論でいえる。問題はRがNoether局所整域、Sがその有限拡大局所整域のとき
ホントにSはR-freeか?あるいはもっと弱くR-平坦か?なんだけど。どっちもただしいような気がする。

278 :132人目の素数さん:2005/11/17(木) 06:36:17
The point is to show that if $x$ $y$ and $z$ is not a regular sequence on $R~$.
it is known that there is a non-Cohen Macaulay normal domain $S$
of dimension three in characteristic zero that is integral over $R$.
Let us assume $rxS⊂(x,y,z)S$ and assume $rS⊂/(x,y,z)S$.
If $R~=S~$ is Cohen Macaulay, then we have $rT⊂(x,y,z)T$
for some finite extension $S⊂T$. The trace map sends $T$ to $S$
since $k$ has characteristic zero. This implies that $rS⊂(x,y,z)S$
and this is a contradiction since $S$ is assumed non-Cohen Macaulay.
Hence $R~=S~$ is not big cohen macaulay.
The non-C-M local domain $S$ is constructed by Segre products.

For a finite extension $R⊂S$ ($R$ is regular), $S$ is $R$-free if and only if $S$ is Cohen Macaulay.
The proof uses Auslander-Buchsbaum theorem.


279 :132人目の素数さん:2005/11/17(木) 06:37:52
For a possibly infinite extension $R⊂S$ ($R$ is regular), $S$ is $R$-flat if and only if $S$ is big Cohen Macaulay.

280 :132人目の素数さん:2005/11/17(木) 16:02:41
>>278-279
なんかむずい。もすこし考えてみまつ。それと
 
>therefore is not flat over $R$.
 
これはどうしてっすか?永田先生の教科書には
f:X→YがCM⇔fが平坦&f^(-1)(f(x))がCM
と定義されててだから平坦でない⇒CMでないのはあたりまえだと思うんだけど
逆もいえてるすか?

281 :132人目の素数さん:2005/11/17(木) 16:11:23
>>279
ああ、オレの疑問にあらかじめこたえてるのが>>279なのか。
R⊂Sが整域の拡大でRがregularのときは
R⊂Sが平坦⇔Sがbig CM
か。もしかして一般にR⊂Sが有限射のときR⊂SがCM⇒R⊂Sは平坦だけど
Rがregularの場合は逆がいえるってことなのかな?
しかし>>278-279が正しいとするとR,Sがnoether局所整域でかつ正規環、
R⊂Sが整であるにもかかわらずR⊂Sが平坦にならないことがありうるってことか。
ホントかよって感じ。整だったらSはR上freeだと思いこんでた。

282 :132人目の素数さん:2005/11/17(木) 16:14:05
>>278
>For a finite extension $R⊂S$ ($R$ is regular), $S$ is $R$-free if and only if $S$ is Cohen Macaulay.
>The proof uses Auslander-Buchsbaum theorem.
 
これはどこにのってるっすか?てかこの手のテーマに強くなるには何よめばいいの?

283 :132人目の素数さん:2005/11/17(木) 16:23:36
整基底ってR⊂Sが整拡大でどっちも正規環と仮定してもとれるとは
かぎらないのか。知らんかった・・・real worldで恥かく前に気付いてよかった。

284 :283:2005/11/17(木) 16:52:41
また書きわすれた。RもSもlocalね。

285 :132人目の素数さん:2005/11/17(木) 17:28:44
>>278ヨンだ。やっぱりだめっぽいな。う〜んなんとかならんかな?
 
 RがNoether-local-normal⇔任意の整域の拡大R⊂Sは××
 
みたいな××がないもんだろうか?

286 :132人目の素数さん:2005/11/17(木) 17:57:42
>>これはどこにのってるっすか?てかこの手のテーマに強くなるには何よめばいいの?

Cohen Macaulay Rings by Bruns and Herzog (Cambridge).
Look at proposition 2.2.11.

287 :132人目の素数さん:2005/11/17(木) 18:05:30
>>286
thx。>>285はどう?たとえば
 
 RがNoether-local-normal⇔任意の整域の拡大R⊂Sは平坦⇒CM
 
とかいえないすかね?

288 :132人目の素数さん:2005/11/18(金) 12:04:47
>>RがNoether-local-normal⇔任意の整域の拡大R⊂Sは平坦⇒CM

I heard that someone gave an example $R$ which is normal and $R⊂S$ is finite and $S$ is CM.
However, this example shows that the normalization $S~$ in the fraction field of $S$ is finite over $R$, but is not CM. So

289 :132人目の素数さん:2005/11/20(日) 23:39:16
代数幾何学四天王:森重文・向井茂・宮岡洋一・川又雄二郎

290 :132人目の素数さん:2005/11/21(月) 12:33:25
代数幾何学四天王:森重文・向井茂・宮岡洋一・川又雄二郎


291 :132人目の素数さん:2005/11/21(月) 12:48:01
誤爆か?

292 :132人目の素数さん:2005/11/21(月) 22:56:04
森さんって最近どんな仕事してるの?

293 :132人目の素数さん:2005/11/22(火) 11:08:04
森さんって最近どんな仕事してるの? 森さんって最近どんな仕事してるの? 森さんって最近どんな仕事してるの?

294 :132人目の素数さん:2005/11/22(火) 15:15:45
四天王だから鬼を踏みつけて
動けないようにしているんだろう。
俺のような天の邪鬼を

295 :132人目の素数さん:2005/11/23(水) 13:02:33
>>294
おれもいまお前と同じ状態 つらい

296 :132人目の素数さん:2005/11/23(水) 13:34:35
>>294
わしもじゃ

297 :132人目の素数さん:2005/11/23(水) 14:35:44
わしもじゃ

Who is your advisor?

298 :132人目の素数さん:2005/11/23(水) 14:39:25
みんな四天王みたいなすごい先生指導教官にしているんだ。
うらやまー

299 :132人目の素数さん:2005/11/24(木) 12:28:51
指導教官の先生がすごいと
自分も偉くなったような気がするものでしょうか?

300 :132人目の素数さん:2005/11/24(木) 13:16:51
代数幾何をやっている人は
たいてい自分は落ちこぼれだと思っているから
先生が偉いのは慰めになる。

301 :132人目の素数さん:2005/11/24(木) 13:49:59
隣の芝生は青く見えるよ。

代数幾何をやってる人と数論をやってる人は,あっちの方がおもしろそうだ
とお互い思っている。

302 :132人目の素数さん:2005/11/24(木) 17:06:32
数論幾何をやりなさい。

303 :132人目の素数さん:2005/11/24(木) 17:39:53
数論幾何学と超弦理論ってどっちの方が才能の墓場度が上?

304 :132人目の素数さん:2005/11/25(金) 09:24:35
才能の墓場度・・・うーん良い響きだ(どこがよ?

305 :132人目の素数さん:2005/11/25(金) 10:36:34
墓場は静かでいいじゃないか
数学をするには

306 :132人目の素数さん:2005/11/25(金) 10:40:37
>>300
何にも慰めにならん。
就職の時の推薦文は返って不利に働く。

307 :132人目の素数さん:2005/11/25(金) 10:59:53
弟子の推薦文に
「この人は馬鹿ですが...」
と書いた先生がいたそうだ。
こういう先生は、人一倍の努力で
自分のステータスを築いて来たので
未熟な弟子にそれを落とされるのはたまらないのだろう。
自分のステータスが環境と偶然に恵まれたものでしかないことに
気づいている先生はそんなひどい推薦文は書けない。
第一、馬鹿はそんな先生のところへは行けない。




308 :132人目の素数さん:2005/11/25(金) 12:38:09
↑・・・そうだ。じゃ信じられん。具体的に誰が誰の推薦状を・・・と書いてくれなきゃ。

309 :132人目の素数さん:2005/11/25(金) 12:58:21
Aが...の

310 :132人目の素数さん:2005/11/25(金) 15:00:03
弟子の推薦文に
「この人は馬鹿ですが...」
と書いた先生がいたそうだ。
こういう先生は、人一倍の努力で
自分のステータスを築いて来たので
未熟な弟子にそれを落とされるのはたまらないのだろう。
自分のステータスが環境と偶然に恵まれたものでしかないことに
気づいている先生はそんなひどい推薦文は書けない。
第一、馬鹿はそんな先生のところへは行けない。


Uhhhnn.... そうだ。

311 :132人目の素数さん:2005/11/27(日) 16:08:04
話題を変えていいですか。
代数的な代数幾何の方で
FavreとJonssonのvaluative treeってやつに詳しい方が
いらっしゃいましたら、こいつの代数における意義について
ワンポイントでご教示願えませんか。


312 :132人目の素数さん:2005/12/02(金) 04:34:19
valuative tree

What is this??

313 :132人目の素数さん:2005/12/02(金) 11:30:38
LMN1853

314 :132人目の素数さん:2005/12/02(金) 17:39:06
ああsingular exponentの話ね。multiplier ideal sheafの半連続性でしょ。

315 :馬鹿の大学2年生:2005/12/05(月) 14:42:12
次のようなfの例を挙げよ。

R:実数体
A^2:Rの2次のアフィン空間

f∈R[x,y],既約
Z(f)はA^2で既約でない

---------
ハーツホーンの教科書の問題で,基礎体が代数閉体でない場合の例としてRを
考えているわけですが,例が思い浮かびません。教えてください。

316 :132人目の素数さん:2005/12/05(月) 15:44:57
>>315
>A^2:Rの2次のアフィン空間

A^2:Cの2次のアフィン空間
の間違いでは?

f(x, y) = x^2 + y^2 は R[x, y] で既約だけど
x^2 + y^2 = (x + iy)(x - iy) だから C[x, y] で既約でない。

317 :132人目の素数さん:2005/12/05(月) 15:58:17
Z(f)もA^2で既約でない?

318 :132人目の素数さん:2005/12/05(月) 16:03:44
f=x^2+y^2のときX1=spec Z[x,y]/(f)やspec R[x,y]/(f)=X1×Rは既約だけど
C[x,y]/f=X1×Cは既約でないと。既約だが絶対既約ではない例ですな。

319 :馬鹿の大学2年生:2005/12/05(月) 17:00:52
>>316
ハーツホーンの教科書では添え字でRがついているのでRのアフィン空間です。

Algebraic Geometry (R. Hartshorne) Exercise 1.12 (P8)

Give an example of an irreducible polynomial f∈R[x,y], whose zero
Z(f) in A^2_R is not irreducible.

320 :132人目の素数さん:2005/12/05(月) 19:12:20
f = x^2*(y-1)^2 + (x-1)^2*y^2 とかはどう? いや、既約性にいまいち自身がないけど。

321 :132人目の素数さん:2005/12/05(月) 20:41:00
存在すんの?そんなもん?HartshoneのExercise 1.12(P8)には問題文のあとに
cf. 1.4.2と書いてあってその1.4.2には
“Let f be an irreducible polynomial in A=k[x,y]. Then f generates a prome ideal in A,
since A is a unique factorization domain, so the zero set Y=Z(f) is irreducible.
We call it the affine curve defined by the equation f(x,y)=0. If f has degree d, we say
that Y is a curve of degree d.”
とある。この時点ではkは代数的閉体と仮定してるみたいだけどk[x,y]がUFDなんて別に
代数的閉体じゃなくても成立するじゃん。やっぱりZ(f)はA_Rでは既約でもA_Cでは
既約とは限らないということを注意しようと思ったのに、なんか書きそこなったとかなんとか
そんなんじゃないの?

322 :132人目の素数さん:2005/12/06(火) 03:03:44
なんだやっぱ R[x,y] はUFDだったのね。
それならなら>320の f は既約でFA

323 :132人目の素数さん:2005/12/06(火) 03:20:41
>>322
多分>>320の例でいいと思うんだけど,fの規約性を示すのはかなり大変じゃない?


324 :323:2005/12/06(火) 03:25:58
あ,やっぱり俺わからねえや。>>323は取り消します。もうちょっとじっくり
考えます。

325 :132人目の素数さん:2005/12/06(火) 05:06:38
R[x,y] がUFDだからというより、C[x,y] がUFDだからという方が正しいかな?

C[x,y] 上で f を

  f = { x(y-1) + i(x-1)y }*{ x(y-1) - i(x-1)y }

と因数分解して、各因数が既約であることが示せて、
実数係数のみの因数がないから f は R[x,y] 上既約。

各因数が既約であることは、たとえば x^2, y^2 の項が無いことから、

  x(y-1) + i(x-1)y = (1+i)(x-a)(y-b)

とおいて、 a, b が上手に定まらないことを示せばいい。

326 :323:2005/12/06(火) 11:52:06
>>322>>325
理解できました。感謝です。

327 :132人目の素数さん:2005/12/10(土) 18:32:33
すいません。>>316-326がわからんのですけど。もう解決してんですか?
問題は>>319
 
>Algebraic Geometry (R. Hartshorne) Exercise 1.12 (P8)

>Give an example of an irreducible polynomial f∈R[x,y], whose zero
>Z(f) in A^2_R is not irreducible.
 
だからもとめられてるのはZ_{A^2(R)}(f)が既約でない例ですよね?>>320だと
Z_{A^2(R)}(f)は可約になるの?

328 :132人目の素数さん:2005/12/11(日) 21:30:41
Z(f) = { (0,0), (1,1) } だから可約

329 :132人目の素数さん:2005/12/12(月) 18:18:55
ハーツホーンて日本人?

330 :132人目の素数さん:2005/12/12(月) 18:23:45
そうだよ

331 :132人目の素数さん:2005/12/12(月) 18:28:26
やっぱし

332 :132人目の素数さん:2005/12/12(月) 19:17:08
うそこけ。ガーナ人だよ。ニャホニャホタマクローのお父さん。

333 :132人目の素数さん:2005/12/12(月) 20:02:10
x^2 + y^2
は何が何でも可約だ

334 :福田和也 ◆ItgDnNxNa6 :2005/12/13(火) 01:53:48
http://science4.2ch.net/test/read.cgi/math/1134159356/
相互リンク。

335 :132人目の素数さん:2005/12/16(金) 11:45:22

332 :132人目の素数さん :2005/12/12(月) 19:17:08
うそこけ。ガーナ人だよ。ニャホニャホタマクローのお父さん。

333 :132人目の素数さん :2005/12/12(月) 20:02:10
x^2 + y^2
は何が何でも可約だ

334 :福田和也 ◆ItgDnNxNa6 :2005/12/13(火) 01:53:48
http://science4.2ch.net/test/read.cgi/math/1134159356/
相互リンク。

336 :132人目の素数さん:2005/12/16(金) 11:49:43
たけちゃんのウェッブ・ページだよ♪www
http://www.ms.u-tokyo.ac.jp/%7Et-saito/

たけちゃんのウェッブ・ページだよ♪www
http://www.ms.u-tokyo.ac.jp/%7Et-saito/

たけちゃんのウェッブ・ページだよ♪www
http://www.ms.u-tokyo.ac.jp/%7Et-saito/

337 :132人目の素数さん:2005/12/16(金) 23:05:56
上野 代数幾何 岩波
の補題2.34(C)SpecAが整スキームであるための
必要十分条件はAが聖域であること
の証明 どなたかわかる方いませんか?



338 :132人目の素数さん:2005/12/16(金) 23:07:22
整スキームの定義は?

339 :132人目の素数さん:2005/12/16(金) 23:11:09
任意の開集合Uに対しF(U)が聖域であること

340 :132人目の素数さん:2005/12/16(金) 23:17:57
ワロスw

341 :132人目の素数さん:2005/12/16(金) 23:55:14
0でないF(U)の元(s(p)),(t(p))をとったとして
s(p)とt(q)が0でないとすると
(s(p)t(p))のどの元が0にならないの?

342 :132人目の素数さん:2005/12/17(土) 00:02:53
【建部 】斎藤毅先生【Invent】
http://science4.2ch.net/test/read.cgi/math/1134743220/

343 :132人目の素数さん:2005/12/17(土) 00:25:34
とりあえず環の局所化の復習しような

344 :132人目の素数さん:2005/12/17(土) 00:34:12
わかった!!

345 :132人目の素数さん:2005/12/17(土) 00:35:41
・教授のコネがもうないから、俺達就職できない
 じゃん
・何でたけちゃんは研究しても就職できないって
 言わなかったんだよ
・大学院なんて役に立つこと何も教えないじゃん
・企業への就職を世話するのも大学の義務だろが
・数学なんて税金泥棒、研究する価値なし!!

346 :132人目の素数さん:2005/12/18(日) 13:30:35
>>342

志甫 淳 (東大数理助教授) + 建部賞特別
坂内 健一 (名大多元助手) + 建部賞奨励 + duke
安田 正大 (数理研助手)
深谷 太香子 (慶應大商講師) + 建部賞奨励
落合 理 (阪大理講師)
佐藤 周友 (名大多元助手) + 建部賞奨励 + duke
小林 真一 (名大多元助手) + 建部賞奨励 + invent
伊藤 哲史 (JSPS) + 建部賞奨励 + invent

347 :132人目の素数さん:2005/12/18(日) 21:04:52
global sectionで生成されて
H^1が消えないline bundleの
例を教えてください。

348 :132人目の素数さん:2005/12/18(日) 21:27:07
>>347
よくわからんのですがXが代数閉体上のcurveだったらdimH^1(X,O)=算術的種数とかに
なるらしいので算術的種数が0でないcurveをとってきたらOx自身がそのような例になるんじゃないすか?

349 :132人目の素数さん:2005/12/19(月) 00:59:37
>>348
ありがとう。ついでにもう一つ、
ample line bundleはいつ存在しますか?

350 :132人目の素数さん:2005/12/19(月) 10:00:45
>上野 代数幾何 岩波

これは、ちょっと極端に言うとお話だね。
ちゃんとした証明は、別の本にあたる必要がある。
例えば、部分スキームのところとか。

351 :132人目の素数さん:2005/12/19(月) 12:54:44
てかあの本ってほとんどハーツホーンのぱくりにしか思えないんだけど

352 :132人目の素数さん:2005/12/19(月) 13:00:05

>>351

それとMumford。
HartshornもMumfordも結構いい加減。
結局、EGA に当るしかない。

353 :132人目の素数さん:2005/12/19(月) 13:18:25
おまえらそんなもん読んで何になれるつもり?無意味だから止めな。私の感では「おまえらは大学の先生にはなれないだろう。」

354 :132人目の素数さん:2005/12/20(火) 03:04:48
qing liu
algebraic geometry and arithmetic curves
これ読んだことある人います?
しっかり書いてあります?

355 :132人目の素数さん:2005/12/20(火) 16:34:31
Yves Andre「Une Introduction aux Motifs」はどう

356 :132人目の素数さん:2005/12/20(火) 17:28:28
serre双対定理の証明のってる本ってある?
なんかhartshorneの証明はいまいち信用できない気がする

357 :132人目の素数さん:2005/12/20(火) 18:20:23
論文集みれば

358 :132人目の素数さん:2005/12/21(水) 09:07:40
>>357

誰の? 彼の言ってるのはGrothendieckが証明した射影スキーム上での
Serreの双対定理のことだろ。だから、Serreの全集には載ってない。

359 :132人目の素数さん:2005/12/21(水) 09:19:24
よく覚えていないが、小林せんせの本に載ってなかった?


360 :132人目の素数さん:2005/12/21(水) 09:24:28
小林の複素幾何のことか?
それには載ってないよ。
だから複素多様体上のSerreの双対定理のことじゃないんだよ。

361 :132人目の素数さん:2005/12/21(水) 10:02:09
>>358
Serre Dualityって、ではSerreは何を証明したの?

362 :132人目の素数さん:2005/12/21(水) 11:45:12
分からない奴だな。GrothendieckがSerreの結果を一般化したんだよ。
Rieman-Roch-Hirzebruch だって Grothendieckが一般化しただろ。
それと同様。

363 :132人目の素数さん:2005/12/21(水) 12:23:41
>>362
トウシロウデスマソ
具体的にはどんなステートメントすか?
Serreの結果→(A)
Grothendieckの一般化→(B)
Rieman-Roch-Hirzebruch→(C)
Grothendieckの一般化→(D)
それぞれ何にのってるすか?

364 :362:2005/12/21(水) 12:36:48
>>363

悪いけど、面倒なんで俺はパス。
誰か?

365 :岩波書店編集部:2005/12/21(水) 12:45:00
>>363
岩波数学辞典第四版をお待ちください。
(B)と(D)のステートメンと参考文献、
(A)と(C)の参考文献が載っています。

366 :132人目の素数さん:2005/12/21(水) 13:05:01
>>365
第4版もってね・・・orz。教科書レベルでないのかな?Grothendieckの定理とか
教科書にのってないすかね?

367 :132人目の素数さん:2005/12/21(水) 13:49:42
>>366
Allen Altman & Steven Kleiman
Introduction to Grothendieck duality theory
Springer, 1970 (Lecture notes in mathematics 146)

William Fulton, Intersection theory, Springer, 1998


368 :132人目の素数さん:2005/12/21(水) 15:24:58
↑の本の一部でSerreの結果を用いている。
それから判断すると、Serreは射影的代数多様体のコホモロジーにたいしてdualityを証明したんではないだろうか。
それをGroが完備スキームに拡張したんでしょうか。

369 :132人目の素数さん:2005/12/21(水) 15:40:30
>>368
>Serreは射影的代数多様体のコホモロジーにたいしてdualityを証明したんではないだろうか。

そうだけど、論文に書かれた、任意標数の体での彼の証明(?)は
えらく荒いスケッチ。見る人が見ればわかるんだろうが。

370 :132人目の素数さん:2005/12/21(水) 17:46:17
>>367-368
おお、GJ。thx!月曜日大学いってながめてこよ。どうせわからんだろけど。

371 :132人目の素数さん:2005/12/21(水) 18:32:56
Allen Altman & Steven Kleiman の本は読めるよ。
環論とホモロジー代数の知識だけで。

372 :中学生。:2005/12/23(金) 18:53:45
代数幾何って何をするものですか?
どういうものですか?

373 :132人目の素数さん:2005/12/23(金) 23:31:00
もしあなたが本当に中学生なら、
悪いことは言わないからここで見たことは全部忘れて代数幾何なんて名前も忘れて
パソコン切って机に向かって英単語覚えなさい。

もしあなたが実は中学生のふりをした数学科の大学生なら
悪いことは言わないからここで見たことは全部忘れなくてもいいから代数幾何って名前忘れるとやばいから
パソコン切って机に向かっておとなしくはーつほーんでも読みなさい。

もしあなたが実は中学生のふりをした工学部の大学生なら
……人生替わってくんない?
あ、だめ。やっぱあげない。俺の人生だし。

374 :132人目の素数さん:2005/12/24(土) 00:11:18
みんな 
hartshorn読みきるのに
どれくらいかかった?


375 :ユ゚モcリaヨ& ◆tr7wwJFvz6 :2005/12/24(土) 01:35:25
1DAY

376 :132人目の素数さん:2005/12/24(土) 02:00:37
>>374
まともの読んだのは1〜2章程度、あとは辞書w

377 :132人目の素数さん:2005/12/24(土) 16:42:14
Christmas holiday season. You can get season limited digital DVD player, just
at $99.99. It is extrordinarily cheap. Just buy it!!

378 :132人目の素数さん:2005/12/24(土) 20:14:02
>>374
まともに読み切ったのは
松村先生くらいじゃないか?

379 :132人目の素数さん:2005/12/27(火) 14:34:05
可換環論の知識 + ホモロジー代数の知識 + 古典代数幾何の知識(終結式、消去法、etc.) + 一日

380 :132人目の素数さん:2005/12/27(火) 16:08:47
    / ̄ ̄ ̄ ̄\    27歳で日本数学会は下らないと悟った。
   (  人____)   30歳でフィールズ賞も下らないと分かった。
    |ミ/  ー◎-◎-)   33歳で下らない建部賞を贈られた。
   (6     (_ _) )   36歳でアカポスを諦めた。
  __| ∴ ノ  3  ノ    39歳で自分自身を諦めた。
 (__/\_____ノ      だから愚痴はかみ殺してた。
 / (   ))      )))   「アカポスはコネ」が口癖。
[]___.| |ラブひな命 ヽ    自分を相手にしない公募は糞以下だと気づてたから。
|[] .|_|__>>1___)    言えば僻みになるから負け惜しみになるからダサいから、
 \_(__)三三三[□]三)    ずっとかみ殺してた。
  /(_)\:::::::::::::::::::::::|      でも2ちゃんで言ったら最高に笑えた。
 |Sofmap|:::::::::/:::::::/       「川北君に嫉妬したInvent崩れが、女児を刺す!w」
 (_____);;;;;/;;;;;;;/
     (___[)_[)         本当に心の底から笑えた…。

381 :132人目の素数さん:2005/12/28(水) 11:32:22
数学の代数専攻してる者ですが、物理オンチな人間が
ポルチンスキのストリング理論読むために必要な
適当な場の理論その他の本を教えて下さい




382 :132人目の素数さん:2005/12/28(水) 11:35:10
     /    ,ィ,.イ /リノノ l !
     'ィ   /__ '     i iノ
      { r 、i ‐i ̄ `iー'r ‐=!'゙
      ヽl i),゙  ゙ー─' iー-イ!
      ヾi_  ' 、__ ' /゙
       | ヽ    -  /
       ,rl. _ ヽ、___,ィ、
 _,.. -‐, =ヽt' _゙二二ニ'ィノヽ、_

ハッハッハッハッハ! 見ろ!
Invent崩れの百番煎じ論文がゴミのようだ


383 :132人目の素数さん:2006/01/02(月) 04:40:17
960

384 :132人目の素数さん:2006/01/05(木) 22:14:17
SpecRとSpecAが同相のとき
RとAは同型になるかな?

385 :132人目の素数さん:2006/01/05(木) 22:24:20
任意の体は同型か

386 :132人目の素数さん:2006/01/05(木) 22:43:02
あ、ごめん。
私がバカだった。


387 :132人目の素数さん:2006/01/06(金) 00:41:01
構造層も考えよ

388 :132人目の素数さん:2006/01/06(金) 09:19:07
SpecRとSpecAが同相のとき
RとAは同型になるかな?


Are there any conditions?

389 :132人目の素数さん:2006/01/06(金) 09:50:14
同相なだけでは全然ならない
よ〜く考えよ

390 :132人目の素数さん:2006/01/06(金) 15:06:04
時代は、Publish & Perish へ

アナレン級に3本、全部で10本超の業績では
崩れるのが普通です
アナレン級に3本、全部で10本超の業績では
崩れるのが普通です
アナレン級に3本、全部で10本超の業績では
崩れるのが普通です

391 :132人目の素数さん:2006/01/07(土) 15:02:56
馬鹿の一つ覚え

392 :132人目の素数さん:2006/01/07(土) 15:35:19
>>385
>>389
RとAが3次元以上の整域なら?

393 :132人目の素数さん:2006/01/07(土) 17:50:59
ageます。
非同型な3次元以上の整域R,Aで
SpecRとSpecAが同相となるものを教えてください。

394 :132人目の素数さん:2006/01/08(日) 17:01:10
環付き空間としてかね?

395 :132人目の素数さん:2006/01/09(月) 05:12:21
楽をしようとせずに、位相区間で考えよう。

396 :132人目の素数さん:2006/01/09(月) 18:08:18
>>393
うーん、無いような気もするが・・・
C[x, y, z] と C[x, y, z, w][(x^2 + y^2 + z^2 + w^2 -1)
でどうだ?

397 :132人目の素数さん:2006/01/09(月) 18:10:04
訂正
C[x, y, z] と C[x, y, z, w]/(x^2 + y^2 + z^2 + w^2 -1)


398 :132人目の素数さん:2006/01/09(月) 21:51:06
但し閉店全体の集合に限って。

399 :132人目の素数さん:2006/01/09(月) 21:57:28
↑代数へいたい上の有限生成環では弊店の同窓とSpecの同窓は同じだよ。

400 :132人目の素数さん:2006/01/10(火) 02:44:34
>>399
Zariski位相で考えているから違うよ。
Spec(C[x, y, z])の閉店全体の集合 = C^3 と見ると、代数的集合が即ち閉集合。

401 :132人目の素数さん:2006/01/10(火) 21:32:49

398の内容は勿論Zariski位相で。
数学辞典 第3板のp688の右上から9〜11行まで で述べられているように、
体の上の被約分離的有限系スキームと代数多様体とは同じと書いてるよ。

402 :132人目の素数さん:2006/01/12(木) 13:21:17
>>396
why?

403 :132人目の素数さん:2006/01/12(木) 18:28:14
396は間違ってるな。政界は399と401 だろ?

404 :132人目の素数さん:2006/01/12(木) 23:24:54
で、結局>>396は位相空間として同型?

405 :132人目の素数さん:2006/01/12(木) 23:25:57
限りなく違うっぽいがw

406 :132人目の素数さん:2006/01/13(金) 00:18:54
同じであるわけがない

407 :132人目の素数さん:2006/01/13(金) 00:20:28
396の回答はあまりにも悲しいぞ。

408 :132人目の素数さん:2006/01/13(金) 05:13:38
>>407
じゃ君>>393に答えて。

409 :132人目の素数さん:2006/01/13(金) 10:44:12
答えは、体k上の有限生成環の範囲では、「ない」が正解。
理由はSpecの同窓はschemeの同型を与える。
これはアフィんschemeでは環の同系と同じ。

従って判例があるとすれば、base schemeは整数環などを探すべき。

410 :132人目の素数さん:2006/01/13(金) 10:49:18
↑間違っていたら指摘してくれ。自信はない。

411 :132人目の素数さん:2006/01/13(金) 11:22:24
409は代数へいたい上なら正しい。

412 :132人目の素数さん:2006/01/13(金) 11:23:06
Spec kとSpec k[x]/x^2

Spec k[x]とSpec k[x,x^{-1}]

>>393の反例ではないが。

413 :132人目の素数さん:2006/01/13(金) 11:34:02
>>409
もちろんHilbertの零点定理から、各素イデアルは
その閉包内の閉点全体から回復されるわけだが、
それと>>393は関係が無い。

414 :132人目の素数さん:2006/01/13(金) 12:18:22
すまん。max(A)=「Aのclosed pointの全体」とすると、
「max(A)=max(B)でその対応するclosed pointでのstalkが一致するとき、A=B」が正解。
ちよっと、ギャップがあった。

415 :132人目の素数さん:2006/01/14(土) 06:16:36
>>412
>Spec k[x]とSpec k[x,x^{-1}] は>>393の一次元の場合の反例になっている。
二次元ではあるのか?

416 :132人目の素数さん:2006/01/14(土) 12:58:05
Spec k[x]とSpec k[x,x^{-1}] は位相が同じ?
直線と双曲線?
直線の原点は双曲線のどの点に対応する?
集合としても同じではないんじゃないの。

417 :132人目の素数さん:2006/01/14(土) 13:20:01
>>416
Spec C[x] = C ∪ {∞}, Spec C[x,x^{-1}] = (C - {0}) ∪ {∞}
C と C - {0} の集合としての任意の全単射を作れば同相

k が任意の体でも同様。閉点全体が同濃度の無限集合になるから。
お前全然分かっとらんな。

418 :132人目の素数さん:2006/01/14(土) 13:23:50
>>415
2次元局所整域。k上有限生成の場合は不明。
>>416
閉点の濃度が同じだろ。よく考えろ。

419 :132人目の素数さん:2006/01/14(土) 13:38:47
>>418
>2次元局所整域
なるほど。閉点も生成点も一個か。

420 :132人目の素数さん:2006/01/14(土) 17:04:23
>>417
分かった。Zariski位相だから。

421 :132人目の素数さん:2006/01/14(土) 23:12:18
パラコンパクト空間Bとし、I=[0,1]とする。BU(n)を群U(n)をもつ主バンドルの分類空間とする。
BU=∪BU(n) には BU(n)のcoveringから弱位相を与える。
このとき、
F:B×I -> BU=∪BU(n) なる連続写像にたいし、
あるm>0が存在して、FはBU(m)でfactorされる、

だろうか?

422 :132人目の素数さん:2006/01/14(土) 23:29:45
>>421
されない。
B = BU, F(x, y) = x

423 :132人目の素数さん:2006/01/15(日) 09:33:06
>>393
の問題について、
C[x][[y, z]] と C[x, x^(-1)][[y, z]] ではダメか?
C[[y, z]][x] と C[[y, z]] [x, x^(-1)] では?
等と云って見る。

424 :132人目の素数さん:2006/01/15(日) 15:56:59

単純にOKとはいえないのでは・・・
理由は堰空間の位相が積位相ではないから。

425 :132人目の素数さん:2006/01/15(日) 15:58:08
>>422
そうですね。
別の問題に関係していて考えたのだが、その別の問題は他の理由で解決した。

426 :132人目の素数さん:2006/01/15(日) 16:34:31
>>424
当たり前の事云うなよ。それより、>>396は決着が付いたのか?

427 :132人目の素数さん:2006/01/15(日) 16:50:36
>>396がdズラこいて放置状態。

428 :132人目の素数さん:2006/01/15(日) 16:58:38
C[x, y, z] と C[x, y, z, w][(x^2 + y^2 + z^2 + w^2 -1) のザ離sキー位相は違うんだろ?おそらく

429 :132人目の素数さん:2006/01/15(日) 18:02:29
代数幾何とか可換環論知らない門外漢だけど、
Specを(位相を込めて)求めるのって難しいんだね。
きちんと勉強すれば、微積で言うところの導関数求めるのと同じくらい基本的な事で、
>>396とかは三角関数の多項式の導関数の
計算問題レベルなんだろうなとか今まで勝手に空想してた。

430 :132人目の素数さん:2006/01/15(日) 19:05:41
本来環付きで考えるところを
位相しか見ないから良く分からん、ってだけだろ。
そんな事、門外漢の俺でも分かるぞ。

431 :132人目の素数さん:2006/01/15(日) 20:15:25
>>427
>>386は断言しているわけではない。むしろ質問だろう。

432 :132人目の素数さん:2006/01/17(火) 19:50:48
>>427
>>396は断言しているわけではない。むしろ質問だろう。

433 :132人目の素数さん:2006/01/18(水) 04:35:39
>>396の例には、何か肯定的or否定的と思われる動機があるの?
それとも単に投げ遣りな質問?

434 :132人目の素数さん:2006/01/18(水) 16:31:48
完備と非完備を混在させるなら話は簡単で、
任意の局所環とその完備化を考えれば良い。
そういう例を求めているのではないのだろう。

435 :132人目の素数さん:2006/01/19(木) 16:18:48
Q 上 0 次元代数多様体は完全交叉になりますか?

436 :132人目の素数さん:2006/01/19(木) 18:05:22
>>435
Q[x,y]/(x^2,xy,y^2)

437 :132人目の素数さん:2006/01/20(金) 08:09:43
>>436

言葉足らずでしたが被約に限ります。

438 :132人目の素数さん:2006/01/20(金) 08:17:12
>>437
更に Q 上既約とします。

439 :132人目の素数さん:2006/01/20(金) 15:59:08
Qの有限次拡大体は単拡大だが。

440 :132人目の素数さん:2006/01/20(金) 18:24:34
>>439
だとどうして言えるのですか?

441 :132人目の素数さん:2006/01/20(金) 19:13:30
完全交叉の定義は?

442 :132人目の素数さん:2006/01/20(金) 20:31:45
>>441

適当な次元、例えば n 次元アフィン(射影)空間の部分多様体として実現させて、
n 個の超曲面の交わりになり、それらの超曲面の次数の積が点の数になる事を言う。

443 :132人目の素数さん:2006/01/20(金) 20:56:26
>>442
基礎体は?
例えばSpec Q(i)は完全交叉?

444 :132人目の素数さん:2006/01/20(金) 21:08:41
>>443
>>435が最初の質問ですが、基礎体は Q です。既約且つ被約と仮定していますが、
既約でない場合は
C なら 0 次元多様体は {1, 2, 3, .... , n} と同型なので、
アフィンなら C = C^1 上一個の n 次超曲面 (z - 1)(z - 2).... (z - n) = 0 自身となる。
射影なら (z - w)(z - 2w)..... (z - nw) = 0

445 :132人目の素数さん:2006/01/20(金) 21:14:46
>>443
>例えばSpec Q(i)は完全交叉?
Spec ではなく閉点全体の集合に限定しています。

446 :132人目の素数さん:2006/01/20(金) 21:51:35
>>445
悪いけど意図がよくわからない。
Q(i)の場合を論じてみてください。

447 :132人目の素数さん:2006/01/20(金) 22:23:24
>>446
>Q(i)の場合
何を論ずるのですか?
ご質問の答えにはなっていないかも知れませんが、
基礎体が Q(i) で Spec Q(i) が一点を意味するとするなら、
一点の空間は>>444と同様常に完全交叉。


448 :132人目の素数さん:2006/01/20(金) 22:32:33
はて、0次元で既約かつ被約なら、一点では?

449 :132人目の素数さん:2006/01/20(金) 22:40:16
>>448
>>444と同じく、
基礎体が Q の時、 {±i} は 0 次元既約代数多様体で、 一個の 2 次代数超曲面 z^2 + 1 = 0 となる。
この場合は成立している。

450 :132人目の素数さん:2006/01/20(金) 22:46:09
>>448
>>445で閉点と言ったのは係数体を C に持ち上げた時の閉点です。

451 :132人目の素数さん:2006/01/20(金) 22:55:51
Qの有限次拡大KをK=Q[x]/fと表すと
これはdeg f次の超曲面f(x)=0になるけど、
何を問題にしているのですか?

452 :132人目の素数さん:2006/01/20(金) 23:54:48
>>451
それは1次元の場合です。
2次元の場合、 Q[x, y] の極大イデアルは2個で生成されるか?

453 :132人目の素数さん:2006/01/21(土) 00:00:47
しかし常に1次元で実現できるのでは?

454 :132人目の素数さん:2006/01/21(土) 00:02:23
>>451
>Qの有限次拡大K
だけを与えたのでは点が決まらない。

455 :132人目の素数さん:2006/01/21(土) 00:19:19
私の不勉強と無知なせいか質問がうまく伝わらないようです。
そこで質問を変えて、アフィン多様体の場合、
Q[x_1, x_2, ... , x_n] の極大イデアルは n 個の元で生成されるか?(n = 2 に限っても良い)
と言う質問に答えていただけませんか?

456 :132人目の素数さん:2006/01/21(土) 06:39:52
muri!!!

457 :132人目の素数さん:2006/01/21(土) 07:40:53
>>456
完全交叉でもですか?即ち、
R = Q[x, y] として、 I = (f, g) を極大イデアルとする時、
dim_Q (R/I) = dim f * dim g

458 :132人目の素数さん:2006/01/21(土) 12:33:18
A prime ideal in a Dedekind domain
is generated by at most 2 elements.
Look at Matsumura's exercise.

459 :132人目の素数さん:2006/01/21(土) 13:25:43
>>458
>R = Q[x, y] は二次元
>Dedekind domain は高々一次元

460 :132人目の素数さん:2006/01/21(土) 18:49:12
>>455
n 個の元で生成される。が正解だとおもう。
regularに関して環論の本を読むべし

461 :132人目の素数さん:2006/01/21(土) 20:39:51
>>460
正則局所環は完全交叉だが、一般の正則環は体上有限生成整域でも、完全交叉にならない。

462 :132人目の素数さん:2006/01/21(土) 21:22:34
>>455
係数体が分離的なら良いだろ。
Q[x_1,...,x_n]→K=Q[x_1,...,x_n]/mとすると、
K=Q(p(f))となるx_1,...,x_nのQ上の一次の斉次式fがとれる。
変数変換してf=x_1としてよくて、
p(x_1)のQ上の最小多項式をgとすると
m=(g(x_1)-p(x_1),x_2-p(x_2),...,x_n-p(x_n)

463 :132人目の素数さん:2006/01/21(土) 21:27:05
>>462
>p(f)
ってなぁに?

464 :132人目の素数さん:2006/01/21(土) 21:29:04
>>462
pはQ[x_1,...,x_n]→K=Q[x_1,...,x_n]/mの事な。

>>458
例えQ[x_1,...,x_n]のfactorで
PIDでないDedekind取っても、
Q[x_1,...,x_n]のidealとしての
生成元の個数は制限されない。

465 :132人目の素数さん:2006/01/21(土) 21:32:28
>>462
訂正
m=(g(x_1),x_2-p(x_2),...,x_n-p(x_n))

466 :132人目の素数さん:2006/01/21(土) 21:35:52
>>462
まだ違った。
p(x_i)=h_i(p(x_1))として
m=(g(x_1),x_2-h_2(x_1),...,x_n-h_n(x_1))

467 :132人目の素数さん:2006/01/21(土) 22:29:50
>>466
なるほど!
thk!

468 :132人目の素数さん:2006/01/23(月) 02:29:02
>>461
例を頼む。

kが標数pの時
q:k(s^p,t^p)[x,y]→k(s,t)
q(x)=s,q(y)=t
のkernelは例か?

469 :132人目の素数さん:2006/01/24(火) 12:47:47
>>468
>kernel
は環じゃないよ。

470 :132人目の素数さん:2006/01/29(日) 19:22:04
>>469
だから、問題は
>極大イデアルは n 個の元で生成されるか?
だろ?

471 :132人目の素数さん:2006/01/29(日) 22:15:01
>>468
Grassmann cone から原点を通る generic な超平面を除いた物

472 :132人目の素数さん:2006/01/30(月) 03:47:23
>>471
具体的には?

473 :132人目の素数さん:2006/01/30(月) 04:23:48
すいませ〜んラウンジで質問しても馬鹿ばっかりで誰も案内してくれないので
ちょっと質問させてもらってもいいですか?

474 :132人目の素数さん:2006/01/30(月) 21:31:13
多分algebraic geometryの質問じゃないと思うので駄目

475 :132人目の素数さん:2006/01/31(火) 00:57:14
n 次元正則整域の極大イデアルは n 個の元で生成されるかと言う問題の最も簡単な反例は
Q ( √-5) の整数環。

476 :132人目の素数さん:2006/01/31(火) 01:21:44
>>468
>q:k(s^p,t^p)[x,y]→k(s,t)
q(x)=s,q(y)=t
のkernelは例か?

像は体であるから、 kernel は極大イデアルである。
これは単項イデアルではないが、 2 個の元から生成されるから
そして dim k(s^p,t^p)[x,y] = 2 だからその意味では反例ではない。

477 :132人目の素数さん:2006/01/31(火) 04:08:49
>>475
そうだな。

>>476
>2 個の元から生成されるから
具体的には?

478 :132人目の素数さん:2006/01/31(火) 07:43:35
>>477
準同型自体が
>q(x)=s,q(y)=t
即ち
I =(x^p - s^p, y^p - t^p) によって定義されているから
(p 乗根は存在すれば一意に定まる。)

479 :132人目の素数さん:2006/02/01(水) 04:04:25
>>478
そうか。勘違いしていた。
すると一般の体上の多項式環では
>極大イデアルは n 個の元で生成される
のか?もちろんn変数な。

480 :132人目の素数さん:2006/02/02(木) 18:16:34
Algebraic K の導入はtopological なものしかないのかねー。

481 :132人目の素数さん:2006/02/03(金) 03:15:06
>>480
Quillen 以前に環の一般次元の代数的 K 群の 7 通りくらいの代数的定義ほぼ同時に異なる人によってなされた。
中には負次元までいっぺんに定義した物も幾つかある。
今でもある種の事実の証明には代数的定義の方が見やすいとして使われている。

482 :132人目の素数さん:2006/02/03(金) 11:38:29
↑何を勉強すれば、それらの7通りを知ることができるのでしょうか。重要な文献を教えてほしいのですが。

483 :132人目の素数さん:2006/02/03(金) 13:36:33
↑何を勉強すれば、それらの7通りを知ることができるのでしょうか。重要な文献を教えてほしいのですが。

Handbook of K-theory by Grayson and Friedlander.
Algebraic K-theory by Srinivas,
Higher algebraic K-theory by Quillen,
Algebraic K-theory by Rosenberg....

484 :132人目の素数さん:2006/02/03(金) 16:44:22
教えてくれ。
compactly generated topologyってのは、compact subsets のつくる covering に関する weak topology のことですか?

485 :132人目の素数さん:2006/02/03(金) 17:19:17
層です。

486 :132人目の素数さん:2006/02/03(金) 17:22:03
CW複体は compactly generated topology ではないきがするけど、ほんとのところはどうだろう。

487 :132人目の素数さん:2006/02/03(金) 17:25:09
>>486
C, W は何の略か分かるか?

488 :132人目の素数さん:2006/02/03(金) 17:26:12
スレ違い


489 :132人目の素数さん:2006/02/03(金) 17:27:42
X が CW複体の位相空間で、Yが局所compactのとき、X×Yは compactly generated topology となるのかな?
Srinivasを読んでるんだけど、上が成り立てば納得できる部分がある。

490 :132人目の素数さん:2006/02/03(金) 17:28:46
すれ違いではないぞ。algebraic K だから。

491 :132人目の素数さん:2006/02/03(金) 17:42:03
>>487
CLosure finite
Weak topology

492 :132人目の素数さん:2006/02/03(金) 17:49:38
CW複体は compactly generated topology なのか?

493 :132人目の素数さん:2006/02/03(金) 18:20:08
大嫌い★代数幾何
大嫌い★位相幾何
大嫌い★微分幾何


494 :132人目の素数さん:2006/02/03(金) 19:41:59
CW複体は compactly generated topology なのね?


495 :132人目の素数さん:2006/02/05(日) 04:17:15
すいません、代数幾何するならハーツホーン読めって言われたんですけど、準備知識として
どのような知識がひつようでしょうか。あとそれを得るための本の名前が分かればありがたい
です。

496 :132人目の素数さん:2006/02/05(日) 06:41:01
ハーツホーンより飯高センセの英語版の本の方がいいと思う

497 :132人目の素数さん:2006/02/05(日) 14:54:58
日本語訳で読めばいいんじゃない?

498 :132人目の素数さん:2006/02/05(日) 14:59:08
>>495

松村「可換環論」共立
上野「代数幾何」123岩波
永田「可換体」消火棒
永田「可換環論」紀伊国屋

499 :132人目の素数さん:2006/02/05(日) 15:15:28
日本語版は間違いが・・・

500 :132人目の素数さん :2006/02/05(日) 15:18:33
caltech

501 :132人目の素数さん:2006/02/05(日) 15:35:07
bibtex

502 :132人目の素数さん:2006/02/05(日) 16:14:34
ハーツホーンを

英語版 + 演習問題解答 + 訳注

でよむつもり

503 :ゆんゆん ◆ix/VLkaG4I :2006/02/05(日) 18:36:11
演習問題を解かずに演習問題解答を読む習慣を
薬中
と言う。

504 :495:2006/02/06(月) 06:15:27
ありがとうございます。

松村「可換環論」は先輩にも進められました。ただあれ自体も読むのに結構な時間がかかりそうです。
そこに書いてあることを認めていく感じで気になる証明だけ読んでいけばいいでしょうか?

505 :132人目の素数さん:2006/02/06(月) 11:34:23
松村の可換環論は、後半は読む必要ないと思うけどね

506 :132人目の素数さん:2006/02/06(月) 18:34:53
Ofer Gabber

507 :132人目の素数さん:2006/02/06(月) 21:09:40
可換環論は一度は呼んでからじゃないと代数幾何は身につかんのじゃないかな。その可換環論といえば、松村か永田かAtiyah&Macdonaldか・・・

508 :132人目の素数さん:2006/02/06(月) 21:25:12
代数幾何ある程度眺めてみないと可換環論なんてやる気起きないと思うんだが

509 :132人目の素数さん:2006/02/07(火) 04:10:39
可換環論の発祥が数論と代数幾何だから当然だ。

510 :132人目の素数さん:2006/02/07(火) 09:50:34
代数幾何をやるのにSerreのFACから読み始めるのは悪くないよ。
あれは短いし分かりやすい。
ただしフランス語だが。
フランス語の勉強を兼ねてやるのもいい。

FACの前にFulton の代数曲線の本を読んでおくのもいい。

511 :132人目の素数さん:2006/02/07(火) 11:24:05
代数幾何の局所理論が可換環論なわけで。
だから可換環論をやるということは代数幾何の一部をやるということ。
それも重要な一部。
だから可換環論は代数幾何のツールとは違う。
ツールの要素もあるが。

512 :132人目の素数さん:2006/02/07(火) 11:39:44
可換環論のルーツは代数幾何なんだね?そしてツールでもあるわけだ。うまいっ!!

513 :132人目の素数さん:2006/02/07(火) 18:38:42
そして代数幾何のルーツは?
M.Chasles あたりという説と
いや代数幾何のルーツはAbelの定理であるという説があるが。

514 :132人目の素数さん:2006/02/07(火) 18:43:19
chowの定理じゃないの?

515 :132人目の素数さん:2006/02/07(火) 19:18:54
それは新説!

516 :132人目の素数さん:2006/02/07(火) 19:33:32
ちゃうちゃう

517 :132人目の素数さん:2006/02/08(水) 14:06:45
>>512
ちょ うまい うますぎるよ
しかも 512 とか切りのいい数とったりとか


518 :132人目の素数さん:2006/02/08(水) 14:07:40
代数幾何のルーツはデカルトじゃないかな

519 :132人目の素数さん:2006/02/08(水) 16:18:24
だろうね

520 :132人目の素数さん:2006/02/08(水) 16:19:20
アポロニウスかも

521 :132人目の素数さん:2006/02/08(水) 16:40:29
かつてデカルトという男が図形に座標を導入したときに、すべてが始まった。

522 :132人目の素数さん:2006/02/08(水) 18:46:43
>>521
ほれは解析幾何という

523 :132人目の素数さん:2006/02/09(木) 11:55:17
代数幾何の入門書を教えていただけないでしょうか。
洋書でもかまいません。

524 :132人目の素数さん:2006/02/09(木) 12:05:09
BlissのAlgebraic Functions

525 :132人目の素数さん:2006/02/09(木) 12:20:49
>>523
森重文著 双有理幾何学

526 :132人目の素数さん:2006/02/09(木) 14:07:57
代数幾何学 廣中平祐
代数幾何入門 上野
Basic Algebraic Geometory Shafarevich

527 :132人目の素数さん:2006/02/09(木) 14:13:44
お二方ありがとうございます。

528 :132人目の素数さん:2006/02/11(土) 12:08:54
Fulton no intersection theory

529 :132人目の素数さん:2006/02/11(土) 12:09:24
525に悪意を感じるのだが

530 :132人目の素数さん:2006/02/11(土) 12:33:33
528 は難しすぎる気がする。どのくらい必要かも良く分からない。
Fulton 「intersection theory 」はどんなところで必要になる?

531 :525:2006/02/11(土) 12:41:12
>>529
ごめんなさい、ネタでしたw

532 :132人目の素数さん:2006/02/11(土) 21:42:51
高校生のための代数幾何 永田雅宜
高校生のための、という言葉と著者名が既に矛盾しているのが地味に笑える

初等代数幾何講義 Mリード

533 :132人目の素数さん:2006/02/12(日) 05:19:35
代数幾何の勉強始めたばっかりなんだが、重要な事項って何?

534 :132人目の素数さん:2006/02/12(日) 06:47:35
>>533
全て

535 :132人目の素数さん:2006/02/19(日) 17:15:48
次の証明考えてくれ。

X:quasi compact scheme
F:coherent sheaf
このとき、
G:有限ランクの局所free scheafが存在して
G−>>F(全射)
とできる。

536 :132人目の素数さん:2006/02/19(日) 20:00:08
X:quasi compact scheme
UはXのopen subscheme
このとき、U上のfreesheafはX上のfreesheaf に拡張できますか?

537 :132人目の素数さん:2006/02/19(日) 20:20:04
3月に教育学部英語科を卒業し、4月から他大学修士で代数学を専攻するものです。先日進学予定大学院の学部三年の代数学の授業に出たところまるで解りません。何か良い代数学の本を教えてください。

538 :132人目の素数さん:2006/02/19(日) 20:24:01
van der Waerden「代数学123」東京図書

539 :132人目の素数さん:2006/02/19(日) 20:24:48
>>535
>>536
を宜しく!

540 :132人目の素数さん:2006/02/19(日) 20:45:05
538さんありがとうございます

541 :132人目の素数さん:2006/02/19(日) 21:57:07
書いたものだけど
van der Waerden「代数学12」東京図書
は読みやすくて力がつく。
でも
van der Waerden「代数学3」東京図書
は別の可換間の本にしたほうがいい。
松村「可換間」消化棒
永田「可換間」紀伊国屋




542 :132人目の素数さん:2006/02/19(日) 23:33:07
松村英之の代数学とか、あるいは松阪和夫の代数系入門なんて良いかもしれません
英語が読めるならM.Artinの"Algebra"なんてのも良いでしょう
しかし、学部三年の代数の授業が解らないのによく決心がつきましたねw

永田は一寸難しいので厳しいかと。。

それから、代数学と代数幾何という言葉はちょっと指す範囲が違うので、
代数学のスレのほうが適切かと。。

543 :132人目の素数さん:2006/02/20(月) 00:05:41
1)
次の証明考えてくれ。

X:quasi compact scheme
F:coherent sheaf
このとき、
G:有限ランクの局所free scheafが存在して
G−>>F(全射)
とできる。

2)
X:quasi compact scheme
UはXのopen subscheme
このとき、U上のfreesheafはX上のfreesheaf に拡張できますか?


544 :132人目の素数さん:2006/02/20(月) 00:12:50
あまりマルチポストするのもどうでしょうか

545 :132人目の素数さん:2006/02/20(月) 04:04:26
2)Free sheaf が Free sheaf に拡張できるのは自明だろ!アホ!
1)は他人に質問しても許されるレベルの疑問だ。代数幾何を勉強した
ことになってる人なら得意がって教えてくれるだろう。

今のご時世「局所 Free sheaf が局所 Free sheaf に拡張できるか?」の
反例を好きなだけ作れたとしても、代数幾何勉強したうちにも入らんぞ。

546 :132人目の素数さん:2006/02/20(月) 04:06:11
>>543
何々なら自明だが、この場合はどうか?
みたいに、要領良く質問の要点を書いてくれ。
freesheaf=O_Uの直和?なら自明だよな、
とか思ってしまう。

547 :132人目の素数さん:2006/02/20(月) 04:11:54
>>545
何だ、やっぱり自明な質問なのか。
それから1)は反例あるんだな?
得意がって教えてくれてthxw

548 :545:2006/02/20(月) 04:21:07
スマソ。白状すると1)は俺にはワカラソorz

549 :132人目の素数さん:2006/02/20(月) 11:09:41
>>545
2)が自明?
証明を書いて美穂

550 :132人目の素数さん:2006/02/20(月) 11:15:21
Free sheaf って構造層の直和だろ?構造層が拡張できるのは自明だと思うが。

551 :132人目の素数さん:2006/02/20(月) 11:18:28
何で有限ランクって分かるんだ

552 :550:2006/02/20(月) 11:48:25
すまんしばらく考えたが551の意図がよくわからん。
「有限ランク Free sheaf なら拡張できるのは自明」だが
「有限ランクとは限らなかったら自明でない」ということ?

それとも551は別のコメントだろうか。

553 :132人目の素数さん:2006/02/20(月) 12:04:20
>>550
そうでした。

554 :132人目の素数さん:2006/02/20(月) 12:05:06
1)はX:regular schemeの条件が必要かもしれない。

555 :132人目の素数さん:2006/02/20(月) 12:55:09
X:regular scheme
U:open subscheme
F:coherent sheaf on X とするとき、
res: F(X)−>F(U) は全射か?

おそらく No?


556 :132人目の素数さん:2006/02/25(土) 13:36:05
最近pseudoeffectiveというのがeffective な概念らしい。

557 :132人目の素数さん:2006/02/25(土) 16:44:18
>>556
基礎論で言うeffectiveか?

558 :132人目の素数さん:2006/02/25(土) 17:09:54
pseudoeffectiveは代数幾何、あるいは複素幾何。

559 :132人目の素数さん:2006/02/25(土) 18:14:23
>>555
X=Spec k[x], F=O_X
を考えたら、当然成り立たない訳だが…

560 :132人目の素数さん:2006/02/25(土) 20:06:49
>>559
ありがとう。
X:regularなら成り立つのだろうか?

561 :132人目の素数さん:2006/02/25(土) 22:38:27
そういう問題じゃねーよ

562 :132人目の素数さん:2006/02/25(土) 23:47:23
X:regularでも成り立たない、ということすね。
そして次は成り立つということか:

X:quasi compact scheme 、regular
F:coherent sheaf
このとき、
G:有限ランクの局所free scheafが存在して
G−>>F(全射)
とできる。



563 :132人目の素数さん:2006/02/26(日) 16:27:49
>有限ランクの局所フリースキーフ?
ベクトル束の事じゃないか!

564 :132人目の素数さん:2006/02/26(日) 17:18:29
そうだよ。

565 :132人目の素数さん:2006/02/27(月) 23:09:21
質問していいですか?

『Schemeのカテゴリーで
X_i -> X_j をaffine morphisms からなる逆系として
X=lim_ind X_i であるとき

P(X)=lim_ind P(X_i) が成り立つ。
但し、P(Y)はY上の有限生成射影module sheafの全体。』


ことが分かりません

566 :132人目の素数さん:2006/02/27(月) 23:47:44
質問続きで申し訳ないのですが、また質問です。

X を smooth variety, Z を codim=2 subvariety, U=X-Z, i:U→X (開埋め込み)
とします。F を U 上の連接層としたとき、i_*F は X 上の連接層ですか?

567 :132人目の素数さん:2006/03/02(木) 17:50:12
>565 X=lim_proj X_i の誤りでした。

すると、内容は当たり前に近かった。

568 :132人目の素数さん:2006/03/26(日) 13:46:47


569 :中川秀泰:2006/03/29(水) 00:25:09
スペース厨はどこか行ってくれ

570 :132人目の素数さん:2006/04/02(日) 16:59:01
宇宙厨房?

571 :132人目の素数さん:2006/04/05(水) 22:18:47
age

572 :572:2006/04/06(木) 20:58:46
5=7-2


573 :132人目の素数さん:2006/04/15(土) 23:17:58
357

574 :132人目の素数さん:2006/04/23(日) 21:50:11
                          ┌-―ー-';
                          |(´・ω・`)ノ 知らんがな
               ____     上―-―'    ____
              | (´・ω・`) |   /  \       | (´・ω・`) |
               | ̄ ̄ ̄ ̄   ( ̄ ̄ ̄)       | ̄ ̄ ̄ ̄
                 ∧        ([[[[[[|]]]]])     ,∧
            <⌒>        [=|=|=|=|=|=]   <⌒>
           /⌒\       _|iロi|iロiiロi|iロ|_∧ /⌒\_
           ]皿皿[-∧-∧|ll||llll||llll||llll|lll| ̄|]皿皿[_|
           |_/\_|,,|「|,,,|「|ミ^!、|]|[|]|[|][]|_.田 | ∧_  ]
           | . ∩  |'|「|'''|「|||:ll;|||}{|||}{|||}{|||}{|,田田.|__|
           | ̄ ̄ ̄ ̄|「| ̄ ̄||[[|門門門|]]|[_[_[_[_[_[
          /i~~i' l ∩∩l .l ∩ ∩  l  |__| .| .∩| .| l-,
       ,,,,,='~| | |' |,,=i~~i==========|~~|^^|~ ~'i----i==i,, | 'i
         | l ,==,-'''^^  l  |. ∩. ∩. ∩. |  |∩|   |∩∩|  |~~^i~'i、
      ,=i^~~.|  |.∩.∩ |,...,|__|,,|__|,,|__|,,|__|,....,||,,|.|,.....,||,|_|,|.|,....,|   | |~i
     l~| .|  | ,,,---== ヽノ    i    ヽノ~~~ ヽノ   ~ ソ^=-.i,,,,|,,,|
    .|..l i,-=''~~--,,,  \  \  l   /   /    /  __,-=^~
    |,-''~ -,,,_  ~-,,.  \ .\ | ./   /  _,,,-~   /
     ~^''=、_ _ ^'- i=''''''^~~~~~~~~~~~~~~~~~~~~^''''''''=i -'^~
           ~^^''ヽ ヽ  i kingキャッスル /  /  ノ
              ヽ  、 l  |  l  l / ./  /
                 \_ 、i ヽ  i  /   ,,=='
                  ''==,,,,___,,,=='~



575 :GiantLeaves ◆6fN.Sojv5w :2006/04/23(日) 22:42:52
talk:>>574 私の城を用意してくれるのか?

576 :132人目の素数さん:2006/04/24(月) 03:41:38
層や茎、芽などはどういう名前の由来なんでしょうか?
気になってしょうがありません。

577 :132人目の素数さん:2006/04/25(火) 07:07:30
>>576
そのまんまだよ。

578 :132人目の素数さん:2006/04/27(木) 14:41:15
>>577
そのまんまってどういうことやねん。

579 :132人目の素数さん:2006/05/01(月) 07:52:34
まず茎と芽を層の上の茎や芽と思わず、抽象的に定義だけで考える。
その後たとえば正則関数の芽の作る層を想像する。
そうすると層が層にしか見えなくなってくる。

次にそこにできた正則関数の芽のつくる層を、芽から作ったことを忘れて
全く形式的にその茎と芽を考える。
そうするとそれらはもう茎や芽にしか見えなくなってくる。
(難をつけるとすれば、「芽」というよりむしろ「枝」に見えるような気もしないでもないところか。)

580 :132人目の素数さん:2006/05/01(月) 12:18:36
くだらねー比喩使うくらいなら厳密な定義を示して
具体的例を何個か提示するほうが良い

581 :132人目の素数さん:2006/05/01(月) 16:44:33
俺どっかに比喩使ってるか(;´Д`)?

582 :132人目の素数さん:2006/05/02(火) 01:08:32
germはともかくとして、faicauxに「層」を当てるのは単なる音訳じゃないの?
stalkはどうなのか知らないけど

583 :sage:2006/05/02(火) 22:33:41
代数幾何への最短距離って
松坂(集合位相)→佐武(線型)→ファンデルベルデン(現代代数)
→アティヤ(可換)→ハーツホーン
でいいのでしょうか?

584 :132人目の素数さん:2006/05/02(火) 23:19:29
>>582
ああそうだね。
faisceauxは本来、「束」という意味だから
stalkの束というのが起源だろうね。

585 :132人目の素数さん:2006/05/10(水) 00:16:18
cross ratio 、複比、非調和比 っていう量の直感的意味ってなんですか?

586 :132人目の素数さん:2006/05/10(水) 01:37:53
age

587 :132人目の素数さん:2006/05/10(水) 03:53:45
ケンロンがらみのやつは、くだらねえ比喩が大好きなんだよ。
層とかファイバーとかスキームとか。

哲学厨との違いは、妄想を具現化するのに本気かどうかってことだけだ。
哲学厨は修行せずに念を語りたがる。

水見式から始めろ!

588 :132人目の素数さん:2006/05/10(水) 04:04:14
強化系】性格:単純で一途
● 参 考
天空闘技場で闘う今井と山口。
このとき今井は、性格による数学の系統分析について述べている。
今井の独自分析ではあるが、歴史上の数学者に合致している興味深い発言である。

【代数】性格:気まぐれでうそつき
【離散】性格:短気で大雑把
【数論】性格:個人主義者・カリスマ性有り
【解析】性格:神経質
【幾何】性格:理屈屋・マイペース

589 :132人目の素数さん:2006/05/10(水) 08:00:43
>>587

層は比喩もなにもそのまんまだろ。
視覚的に一番はっきりしてる例としては、1変数の複素解析関数の
なす層。そのまんま。

590 :132人目の素数さん:2006/05/10(水) 09:40:09
そのまんまひがし

591 :132人目の素数さん:2006/05/12(金) 02:51:30
>>589
全然そのまんまって言われても分かりません・・orz
層っていうからには
「いくえにも重なって、ある厚みを持っているもの」のようなイメージを
持つことが出来るんですよね?

1変数の複素解析関数のなす層では、何が重なっていて、どこが厚み的な要素なのでしょうか?

マジレスお願いしますm(_ _)m

592 :132人目の素数さん:2006/05/12(金) 03:47:00
【幾何】性格:気まぐれでうそつき
【集合】性格:短気で大雑把
【数論】性格:個人主義者・カリスマ性有り
【解析】性格:神経質
【代数】性格:理屈屋・マイペース

こうだろ。


593 :132人目の素数さん:2006/05/12(金) 04:04:27
kingは解析・集合・数論向き。

代数学者は理屈っぽいから彼女ができない。



594 :GiantLeaves ◆6fN.Sojv5w :2006/05/12(金) 08:50:51
talk:>>593 私を呼んだだろう?

595 :132人目の素数さん:2006/05/12(金) 11:00:15
>>591
空間の各点には茎が生えている。この茎には芽がびっしりとついている。
この芽が局所環の元だ。
茎を開集合上でばっさりと刈ってやると断面が出てくる。
この断面の重なりが層ってこと。
faisceauxをそのまま訳せば「束」ってことだろうけど、これだと他の術語と
かぶってしまうし、イメージ的にも音的にも適っていてなかなかの名訳だろ?

596 :132人目の素数さん:2006/05/12(金) 11:08:52
それかこうイメージしてもいいんじゃないかな?
空間上の函数を一つ与えるということは空間上にシートを1枚かぶせてやることで、
このシートをたくさん重ねたものが層。
このシートの重なりをある一点を中心にくりぬいて、半径を狭めるように削っていった
ものが茎。この茎をばらしたときの一つ一つのシートの屑が芽。

597 :132人目の素数さん:2006/05/12(金) 11:47:09
なんでよりわかりづらいイメージを教えるのか・・・

598 :陛下:2006/05/12(金) 15:52:06
あ、層

599 :132人目の素数さん:2006/05/12(金) 20:43:06
>>595
レスありがとうございます。
いちおう出来上がったイメージをうpしてみました。
どうでしょうか。
ttp://l.skr.jp/vip254008.gif.html

600 :132人目の素数さん:2006/05/12(金) 21:28:58
&'(

601 :132人目の素数さん:2006/05/12(金) 21:30:27
>599
そんなイメージでよいと思うよ。
かわいらしい字を書くね。

602 :132人目の素数さん:2006/05/13(土) 08:34:11
うーん、

今の時代なら、フラッシュ動画にたとえたほうがいいだろう。

フレーム、レイヤーという言葉を導入すればいい。
フィルターにもよく噛み合う。

603 :132人目の素数さん:2006/05/13(土) 13:12:10
層の切断って、イメージ的には切断っていうより「くりぬき」に近い感じしない?

604 :なんつっ亭 ◆YLhguIEUXM :2006/05/13(土) 13:14:29
君たち数学大好きか?
だいすきか?
だいすうきか?

なんつって^^;

605 :132人目の素数さん:2006/05/13(土) 14:48:17
>>603
君は何か思い違いをしていると思う。

606 :132人目の素数さん:2006/05/26(金) 11:37:56
551

607 :132人目の素数さん:2006/06/16(金) 00:02:47
718

608 :132人目の素数さん:2006/06/17(土) 05:09:48
>>1
「無意味なスレ立て厳禁」
って読めませんか?
そういうくだらない話は質問スレでやってください


 
                 終   了


そして>>1はすぐ死ね

609 :132人目の素数さん:2006/06/17(土) 10:27:19
>>608
うるせーばーか







ってコピペか…。

610 :132人目の素数さん:2006/06/17(土) 19:00:45
age

611 :132人目の素数さん:2006/06/18(日) 20:14:53
Shafarevich-Tate群 Ш(E/F) の正確な定義ってどのように書けばいいんでしょう?
そこいらの出版物に乗っている定義の仕方がバラバラで
しかも省略されたものや実は書き換えたもので定義ではないものなどが混ざっていて
どの書き方を取ればいいか迷っています。


612 :132人目の素数さん:2006/06/21(水) 00:23:26
Shafarevich-Tate >> Shafarevich-Tate

613 :132人目の素数さん:2006/06/21(水) 01:44:56
http://xxx.lanl.gov/list/math.AG/new.
math.AG/0606406

Fujita's conjecture solved!!!!

614 :132人目の素数さん:2006/07/12(水) 23:50:02
基本的な質問で申し訳ありませんが、コンパクト
2次元複素多様体S上の既約な曲線とはどのように定義されるのでしょうか?
射影空間上の代数曲線なら既約性は定義多項式が既約かどうかで片付く
のですが、一般の2次元複素多様体の上ではどうすればよいのでしょう?
あまりこの辺の定義を書いてないので戸惑ってしまいます。


615 :132人目の素数さん:2006/07/15(土) 22:02:22
age

616 :132人目の素数さん:2006/07/18(火) 18:56:54
Quotスキームの構成方法が述べられている文献を探しています。
Web上にあれば尚良いです。
情報、お待ちしています。

617 :132人目の素数さん:2006/07/18(火) 22:04:41
킹은 똥을 좋아해?
킹은 수학판의 쓰레기
킹 죽어라

618 :132人目の素数さん:2006/07/20(木) 04:56:04

X = (X^(p,q)) は第一象限にある。

42 :132人目の素数さん :2005/07/06(水) 13:51:59
崩れ博士・PD PART3【コネの造りしもの】
http://science3.2ch.net/test/read.cgi/math/1120573848/

43 :132人目の素数さん :2005/07/06(水) 14:05:30
埋めるな死ね

44 :132人目の素数さん :2005/07/07(木) 06:31:22
>>41
>Kom(C) に十分多くの単射的対象があるとは限らない。

やっと気がついたか馬鹿

C が可算直積に付いて閉じていれば
>さて、C に十分多くの単射的対象があると、Kom(C) にも十分多くの
>単射的対象がある。

45 :799:2005/07/07(木) 09:35:53
>>44
>C が可算直積に付いて閉じていれば

これは必要ない。>>41は俺の勘違い。

>やっと気がついたか馬鹿

619 :132人目の素数さん:2006/07/20(木) 05:50:32
1)
次の証明考えてくれ。

X:quasi compact scheme
F:coherent sheaf
このとき、
G:有限ランクの局所free scheafが存在して
G−>>F(全射)
とできる。

2)
X:quasi compact scheme
UはXのopen subscheme
このとき、U上のfreesheafはX上のfreesheaf に拡張できますか?


620 :132人目の素数さん:2006/07/21(金) 10:46:33
Matsusaka Teruhisa-shi

621 :132人目の素数さん:2006/07/28(金) 17:44:46
549

622 :132人目の素数さん:2006/08/06(日) 17:13:25
代数的閉体はネーター環の他にどのような環に分類されますか?
ゴレンシュタイン,コーヘン・マッコレー,正則などなど
お願いします

623 :132人目の素数さん:2006/08/06(日) 17:53:12
>>622
全部

624 :132人目の素数さん:2006/08/07(月) 01:29:33
>>623
レスありがとうございます
どのような文献でその証明を見ることができますか?
代数的閉体でない体の場合はどうなるのでしょうか?

体k上の有限次元代数はk加群として見た場合、有限次元kベクトル空間なので自由k加群である
これは正しいですか?

質問ばかりで申しわけありません
よろしくお願いします

625 :132人目の素数さん:2006/08/07(月) 08:42:25
>>624
そこに書いてある環は全部コーエン・マコーレー環。
体は結局アルティン環で次元はdepth以上という公式から、
アルティン環の次元が0より、
全てのアルティン環はコーエン・マコーレー環。

626 :132人目の素数さん:2006/08/07(月) 08:46:36
>>624有限次元代数の「次元」の意味が
どの基礎環の上の次元かはっきりしてほしい

627 :132人目の素数さん:2006/08/07(月) 11:05:39
>>624
任意の体でよい。
後半もOK


628 :132人目の素数さん:2006/08/07(月) 11:58:26
>>627
多様体の場合でいう次元かも知れないじゃないか。
リー代数として有限次元で体の作用があるものとか。
もしかして加群としてのクルル次元かもしれないし。

629 :132人目の素数さん:2006/08/07(月) 12:18:34
>>628
アホか?

630 :132人目の素数さん:2006/08/07(月) 12:48:35
>>629
というと?
有限次元代数って何ょ

631 :132人目の素数さん:2006/08/07(月) 13:34:17
>>628, >>630

そりゃあんたがまったく正しい。
次元と言ってもいろいろある。空間の次元、アホの次元、
キチガイの次元、エトセ、エトセ...

632 :630:2006/08/07(月) 22:54:00
>>631
わたすがアポでした;;

633 :624:2006/08/08(火) 01:02:26
レスありがとうございます
有限次元代数と言ったのは体k上で加群として有限生成な代数というつもりでした

体k上の有限次元代数Aは自由k加群なのでk加群として射影的
また体kはゴレンシュタイン局所環なのでkのk加群としての入射的次元は有限
よってAはk加群として入射的次元有限

が成り立つ訳ですね
ひょっとして体kはアルティン環だからクルル次元0でかつ
ゴレンシュタイン環だからk加群として射影的かつ入射的なんでしょうか

>>625
体がコーエン・マッコレー環であるという性質の使い勝手がよくわかっていません
なにかよい文献をご存知であれば教えて下さい


634 :625:2006/08/08(火) 05:58:55
>>633
松村先生の本でもいいけど、クラスとして
体⇒Gor環⇒完交環⇒正則環⇒CM環
だったっけか。
とにかく
クルル次元〓depth
がCM環の定義で、かつ全ての環で
クルル次元≧depth(≧0)
な訳だからアルティン環のようにクルル次元0なら、0以上であるdepthが0以下なんだから
クルル次元〓depth(〓0)
としか成り得ないので
アルティン環、特に体はCM環
まぁ体なんてトリビアルな環なんだから、
何のクラスにも入っちゃうよ。

635 :132人目の素数さん:2006/08/08(火) 07:53:11
体⇒正則環⇒完交環⇒Gor環⇒CM環

kichinto shirabeyoune!!!

636 :132人目の素数さん:2006/08/08(火) 14:44:49
日本語で書くと気持ち悪いな

637 :132人目の素数さん:2006/08/08(火) 14:58:46
体⇒正則整域⇒(以下略)

638 :634:2006/08/08(火) 22:14:49
>>635
ド・モルガンの定理とか
ひっくり返るとあっちがこっちに含まれてとか、
そういう瞬時のイメージが苦手…
と一応言い訳スマソ(m__)m

639 :132人目の素数さん:2006/08/09(水) 22:09:59
みなさんレスありがとうございます
クルル次元=depthがCM環ということはクルル次元無限のCM環は存在しないということになるのでしょうか?
それともクルル次元無限かつdepth無限の環はCM環になるのでしょうか?
クルル次元無限のゴレンシュタイン環は聞いたことがあります
ゴレンシュタイン環はCM環なのでクルル次元無限のCM環になってしまいます
間違いを指摘していただきたく思います

640 :132人目の素数さん:2006/08/10(木) 13:22:09
>>639

Usually, CM rings are defined for Noetherian local rings, in which
case the ring has always finite Krull dimension.
For non-local rings $R$, $R$ is CM iff every localization of $R$
at a prime ideal is CM. However, there are examples of Noetherian
rings of infinite Krull dimension. But the localization of those rings
at a prime ideal has still finite depth and dimension.
I guess your question really means you're looking for rings such that
the Krull dimension (and depth) diverges to infinity
for an appropriate choice of a sequence of primes ideals of $Spec(R)$.

641 :132人目の素数さん:2006/08/11(金) 01:58:04
>>640
Thank you for your response.
At first, I would like to ask the difference between algebraic closed fields and general commutative fields in terms of ring theory.
When we treat finite dimensional algebras over a field $k$ as $k$-modules,
I guess, we just have the property that these algebras are free as $k$-modules.
This is my trouble.
If so, I wonder why we treat finite dimensional algebras over an algebraic closed field as well as finite dimensional algebras over a field.

Although my trouble remains,
I would like to know the examples of Noetherian rings which have the infinite Krull dimension.


642 :132人目の素数さん:2006/08/11(金) 08:58:07
体それ自体は環論的にみたらトリビアルで面白くない。
超越拡大体論となるとまた別だが。

643 :132人目の素数さん:2006/08/11(金) 13:59:28
>>641

Take a look at Nagata's local ring or an exercise (somewhere) in the Book
"Kan to tai 2" by R.Hotta.
The example is constructed as a product of certain localizations.


644 :132人目の素数さん:2006/08/12(土) 00:52:13
Counterexample to the Hodge Conjecture

http://arXiv.org/abs/math.AG/0608265

のコメントきぼんぬ




645 :132人目の素数さん:2006/08/12(土) 14:47:38
[edit]


Counterexample?
Recently, a paper has appeared in arxiv, which claims to give a counterexample to the conjecture, though this hasn't been verified yet.

http://en.wikipedia.org/wiki/Hodge_conjecture

646 :132人目の素数さん:2006/08/12(土) 23:21:02
Fred Roush

http://www.genealogy.math.ndsu.nodak.edu/html/id.phtml?id=9350

647 :132人目の素数さん:2006/08/19(土) 11:48:51
いまHartshorneを読んでいるんだが、schemeがfinite type over a field k
の定義が載ってない。morphismがof finite typeであることの定義は載っているんですが。

648 :132人目の素数さん:2006/08/19(土) 12:52:04
もちろんかんがえてるschemeからbase schemeへのstructure morphismがof finete typeということだろう。

649 :132人目の素数さん:2006/08/19(土) 13:15:30
>>648
つまり、この場合なら、考えているschemeXからSpec(k)へのmorphismが
of finite typeということかい?

650 :641:2006/08/21(月) 11:52:24
>>643

Thank you for your response.
I would see Hotta's example.

ある加群の局所化の全体が与えられているとき、もとの加群を再構成するような議論は可能ですか?


651 :132人目の素数さん:2006/08/21(月) 12:05:13
>>647
>schemeがfinite type over a field k の定義が載ってない

いくらなんでも載ってるだろ。

652 :132人目の素数さん:2006/08/21(月) 15:44:01
>>651
いんや、載ってないよ。隅々まで確認したけど。

653 :132人目の素数さん:2006/08/21(月) 16:57:05
>>652

schemeがfinite type over a ring の定義もないのか?
そんなはずはないだろ。
因みに体は環の一種っていうのは知ってる?

654 :132人目の素数さん:2006/08/21(月) 17:07:28
649でおk

ちなみにここはそこまで教えなきゃならんやつは来るなって姿勢だけど気にするな

655 :132人目の素数さん:2006/08/21(月) 17:23:31
>>654
>649でおk

それはいいんだよ。当たり前だから。
今、問題にしてるのはその定義が載ってるかどうかってこと。

656 :132人目の素数さん:2006/08/21(月) 17:31:14
>>654
どうもありがとうございます。

>>655
私が見た限りでは、Hartshorneの英語版には載っていません。

657 :132人目の素数さん:2006/08/22(火) 11:03:27
>>656

明確に定義されてはいないが常識的には以下から分かる。

S をスキームとしたとき S 上の スキームの定義はある
(原書の70〜80ページのどこか)。S 上の スキームのなす圏を Sch(S)
と書くとする(原書ではSch はドイツ文字で書いてある)。
S = Spec(A) のとき記法の乱用(by abuse of notation) として
S 上の スキームのなす圏を Sch(A) と書くとある。

これから A が環のとき A 上のスキームの意味は明らかだろう。
同様に A 上有限型(finite type)のスキームの意味も明らか。

658 :132人目の素数さん:2006/08/22(火) 11:59:04
大好き★メコスジ幾何 Part 69

659 :132人目の素数さん:2006/08/22(火) 11:59:17
>>657
どうもです。私の持っている本ではP78に書いてますね。
ただ、最後の2行の「明らか」としている辺りは、すでにその定義を知っていないと、
「明らか」という確信は持てないような気がするんですよね。
まああくまで、私が、という話であって、他の人なら「明らか」だと思えるのかもしれないですが。
また、昨日、別の代数幾何の本を探してみたら、きちっと定義を書いてある本はあったので、
他の本を参照すれば問題ないと言えば問題ないわけなんですが。
ただ、Hartshorneは他の定義は結構ビシッと書いてあるところが多かったので、
結構重要な定義がはぐらかされているのは、あれっとは思いました。

660 :132人目の素数さん:2006/08/22(火) 12:14:31
>>659

定義というより記法または用語の濫用なわけ。
正式には Spec(A) 上のスキームなり有限型スキームというべき。
しかし、いちいちこう書くのはわずらわしいから単に A 上のスキームなり
有限型スキームというだけの話。

記法の濫用というのは数学ではよくある。
これは便利だけど誤解を与える場合があるんで注意が必要だが
これを全然つかわないとくどくて不便この上ない。

661 :132人目の素数さん:2006/08/22(火) 12:46:20
>>659
>ただ、最後の2行の「明らか」としている辺りは、すでにその定義を知っていないと、
>「明らか」という確信は持てないような気がするんですよね。

S = Spec(A) のとき記法の乱用(by abuse of notation) として
S 上の スキームのなす圏を Sch(A) と書くとある。

これから A 上のスキームが何を意味しているか明らかでないって
いうことは、あんたには察しってものがないのか。
なんでも明確に言わないとわからないのか?

662 :132人目の素数さん:2006/08/22(火) 13:31:51
>>661
といいましてもですね。類推がきかなかったんだから、しょうがないんです。
それにS=Spec(A)のときはS上のスキームはA上のスキームとも呼ぶ、ときちっと書いてある本もあるわけですから、
出来ればこの本(Hartshorne)でも、そう書いてもらえばなあと思っただけです。
まあ、単に私が察しがつかない馬鹿だっていうだけなのかもしれないですけどね。

あと、なんでも明確に言わないとわからない、というわけではないですけど、
こと「定義」に関しては厳密にきちっと理解することが大事だと考えているので。
勝手に定義を類推して、結果間違った定義を覚えたら意味ないですし・・・。

663 :132人目の素数さん:2006/08/22(火) 13:42:19
>>662

だから定義じゃないんだって。用語の濫用だって言ってるだろ。
それからあのくらいの察しがつかないなら Hartshorne はとてもじゃ
ないけど無理だと思うよ。数学に察しがいらないと思ったら大間違い。

664 :132人目の素数さん:2006/08/22(火) 13:43:56
本の読み方が判ってない>662

665 :132人目の素数さん:2006/08/22(火) 15:20:21
>>663
わかりました。仰るように確かに用語の濫用です。
「定義」なんて口を滑らせてしまった私が悪かったよ。
あとね、別に私は数学に察しがいらないなんて言ってませんよ。

>>664
それはどういうことだい?

666 :132人目の素数さん:2006/08/25(金) 18:46:59
ぞろ目

667 :132人目の素数さん:2006/08/25(金) 19:17:09
まあHartshornはあまり親切ではないよねってことで
あまり「親切」なのも、かえって読みにくいので考えものだが

668 :132人目の素数さん:2006/08/27(日) 08:14:59
まぁまぁ、そういう「常識」は先輩や先生との会話で学ぶものですよ。
独力でハーツホーンに挑んでいる点を買って応援しようじゃないですか。

669 :132人目の素数さん:2006/08/28(月) 17:17:20
ハーツホーンが親切でないというなら後はもうEGA読むしかないな

670 :132人目の素数さん:2006/08/30(水) 17:46:39
855

671 :132人目の素数さん:2006/09/06(水) 18:08:50
いい問題をだしてやろう。

Rをintegral local Noether domain でdimR=1とする。
aをRの元で、0でもunitでもないとし、
さらに、Rは素体k_0を含むとする。
このとき、Rはk_0[a]上flatであることを示せ。

672 :132人目の素数さん:2006/09/06(水) 18:11:11
 

673 :132人目の素数さん:2006/09/06(水) 23:31:29
tautlogical line bundle
ってなんなん

674 :132人目の素数さん:2006/09/07(木) 00:05:57
射影空間P(E)はベクトル空間Eの1次元線形空間(line)を点と見たもの。よってP(E)の各点にそのlineが付随させて、構成したP(E)上の一次元ベクトルバンドル。

675 :132人目の素数さん:2006/09/07(木) 00:07:05
それより>>671をといて味噌

676 :132人目の素数さん:2006/09/07(木) 00:33:06

>k_0[a]上flatである

事の意味を書き表してみよ。

677 :132人目の素数さん:2006/09/07(木) 16:52:57
>>647
Grassmann多様体上にはベクトル束でできるん?

678 :132人目の素数さん:2006/09/07(木) 19:00:51
>>669
>ハーツホーンが親切でないというなら後はもうEGA読むしかないな

それはそう。一般的にいってHartshorneよりEGAのほうがわかりやすい。
ただしEGAの場合は非常に根気がいる。併読がベストかな。

679 :132人目の素数さん:2006/09/07(木) 21:18:13
>>677

674と同じ考え方でできるじゃないか。

680 :132人目の素数さん:2006/09/08(金) 10:32:42
>>674>>679
ありがd


681 :132人目の素数さん:2006/09/10(日) 15:35:03
面白い問題を出してageましょう。

Scheme X上のquasi-coherent sheaf について、
そのinjective envelopeでquasi-coherentなものが取れるか?
ひょっとして、XはNoetherが必要かもしれません。

682 :132人目の素数さん:2006/09/10(日) 21:34:12
答えは兎も角injective envelopeは一意じゃなかったのか?

683 :132人目の素数さん:2006/09/10(日) 21:55:37
あらため、
任意のquasi-coherent sheafに対し、それ を含むquasi-coherent な injective sheaf が存在する?

684 :132人目の素数さん:2006/09/11(月) 15:01:56
quasi-coherentの定義は?

685 :132人目の素数さん:2006/09/11(月) 15:18:35
683は正しかった。ここの皆は証明できるかな?

686 :132人目の素数さん:2006/09/11(月) 15:20:10
数学オリンピックの問題より難しいかも

687 :132人目の素数さん:2006/09/11(月) 16:31:03
定義定義定義定義定義定義定義定義定義定義定義定義定義定義定義定義

688 :132人目の素数さん:2006/09/11(月) 17:34:58
quasi-coherent sheafぐらい自分で調べれ。どんな本にも載ってんが

689 :132人目の素数さん:2006/09/11(月) 17:36:56
今朝憩えれん

690 :132人目の素数さん:2006/09/11(月) 17:56:09
連接層の定義において有限直和を
任意無限直和を許すように拡げたものを
quasi-coherent という

691 :132人目の素数さん:2006/10/03(火) 00:58:21
633

692 :132人目の素数さん:2006/10/10(火) 12:13:31
次の問題が分かる人、教えてくれ。

A:ring
B,C: A上のpositively graded 次数環でそれぞれ有限個の1次要素で生成されているとする。
このとき、Proj(B)=Proj(C)⇒B=C ?

693 :132人目の素数さん:2006/10/11(水) 12:28:50
次の問題が分かる人、教えてくれ。

A:ring
B,C: A上のpositively graded 次数環とする。
このとき、f: X=Proj(B)->Proj(C)=Y がA-schemeの同型で、f^*O_Y(1)=O_X(1) ⇒ BとCは同型か ?

694 :132人目の素数さん:2006/10/14(土) 00:44:04
>>671
一ヶ月以上の亀レスだが
単項イデアル整域上のねじれのない加群は平坦(宮西の教科書の問題I..1.11などを参照)
k_0[a]は単項イデアル整域でRはintegralだからねじれはない
よって平坦

695 :132人目の素数さん:2006/10/24(火) 12:40:30
Forthcoming book.
Check this out!!

"Theory of p-adic Galois representations"

by J.-M.Fontaine and Yi Ouyang, Springer-verlag.

http://faculty.math.tsinghua.edu.cn/faculty/~youyang/

696 :132人目の素数さん:2006/10/24(火) 23:37:37
p-adic Galois rep と motif とではどっちの研究のほうが重要ですか?
どっちが難しいですか?

697 :132人目の素数さん:2006/10/25(水) 01:55:53
>>696
どちらもmotif

698 :132人目の素数さん:2006/10/25(水) 20:05:45
>>694 サンクス

消滅定理の>>251でも「PID上torsion-free moduleはflat」という回答をもらった。




699 :132人目の素数さん:2006/11/03(金) 15:20:24
だれか分かる人、教えるべし。

f:X->S をflat morphism
Y=X×XをXのS上のfiber produt とする。
p_1, p_2をprojectionsとする。
IをX上のinjective O_X module sheafとする。
このとき、Iをp_2でpullbackしたO_Y module sheaf p_2^*(I) は
p_1によるdirectimage p_1_* にたいしacycicか?
すなわち、R^i p_1_*(p_2^* I)=0 (i>0)?

700 :132人目の素数さん:2006/11/03(金) 20:06:53
条件追加:

EをS上のベクトルバンドルとし、X=P(E)で、f:X->Sをprojectionとして,考えてください。

701 :β ◆aelgVCJ1hU :2006/11/03(金) 20:09:32
|x|≦z^2を満たす点全体からなる立体をRとする。点(0,0,1)を通りx軸に平行な直線を中心軸とする半径1の円柱をCとし、RとCの共通部分をTとする。
-1≦h≦1 に対して(0,0,1+h)を通りz軸に垂直な平面によるTの切り口の面積を求めよ。

切り口は)□□なると思うんですがなぜ長方形になるのかわからん教えて。

702 :132人目の素数さん:2006/11/03(金) 22:24:45
βは無視で
βは無視で
βは無視で
βは無視で
βは無視で
βは無視で
βは無視で
βは無視で
βは無視で

703 :132人目の素数さん:2006/11/04(土) 00:35:57
条件追加:

injective sheaf I は quasi-coherent

704 :132人目の素数さん:2006/11/04(土) 01:27:29
自力で何とか証明できたよ:

R^i p_1_*の値は、p_1の値域であるX上localに決定されるから、
U=Spec(C)をXのopen affine subschemeとして、
U×X上で考えればいい。
このとき、R^i p_1_*(p_2^*(I))はquasi-coherent だから、
そのU上のsection の全体Γ(U、R^i p_1_*(p_2^*(I)))によって決定される。
ところが、Γ(U、R^i p_1_*(p_2^*(I)))=H^i(U×X、p_2^*(I))であるから、
X=P(E)のstandard covering {D_+(x_j): j=1,...,r}に関するCech cohomology と一致する。
ところが、そのCeck complex は IのX上のCech Complexを X上 U×X へbase change したものである。
ところが、UはS上flat であるから、U×XもX上flatであり、
よって、p_2^*(I)のU×X上での Cech complex もexactである。
よって、 H^i(U×X、p_2^*(I))=0(i>0)

705 :132人目の素数さん:2006/11/13(月) 05:54:42
700

706 :132人目の素数さん:2006/11/19(日) 00:29:48
>>704
マルチ

707 :132人目の素数さん:2006/11/21(火) 12:17:49
p-adic Hodge muzui....

708 :132人目の素数さん:2006/11/21(火) 17:15:33
そんなことないんじゃない?motifのほうが難しいんじゃない?

709 :132人目の素数さん:2006/11/21(火) 17:27:43
>>708
どの点がどう難しいのか語ってくれ。

710 :132人目の素数さん:2006/11/22(水) 17:38:15
みんなSGAをどのくらいよんでいるのだろうか?
SGA1〜7の内容の説明を頼む。
SGA1以外はさほどむずかしくないようにもみえるのだが、SGAの難しい分冊はどれですか?

711 :132人目の素数さん:2006/11/22(水) 17:48:21
>>710
各巻のpreface見たらよか。

712 :132人目の素数さん:2006/11/30(木) 13:57:27
教えてくれ!!

affine scheme の連結成分はopen subschemeか?

至急Help

713 :132人目の素数さん:2006/11/30(木) 14:06:30
>>712
マルチ

714 :132人目の素数さん:2006/11/30(木) 15:58:08
分かる奴おらんのか。なさけない

715 :132人目の素数さん:2006/12/10(日) 15:15:32
非可換代数幾何について教えて下さい。
参考文献は何かありますか?

716 :132人目の素数さん:2006/12/10(日) 20:01:16
connesの本でも読んだらええがな

717 :132人目の素数さん:2006/12/11(月) 11:19:11
connesは非可換の幾何だけれども代数幾何ではないでしょう。
非可換の代数幾何というのはartinあたりが提唱したものだったと思う。

718 :132人目の素数さん:2006/12/11(月) 22:04:35
もしかして非可換スキームとかなのかな
ここ役にたつかも

ttp://www.math.kochi-u.ac.jp/docky/bourdoki/houkoku/houkoku.html

719 :132人目の素数さん:2006/12/15(金) 16:07:21
Grothen位相の定義は
カテゴリーcat(T)とcoveringとしていくつかの{V_i->U}が与えられていて、
の次の条件を満たすという条件で定義されている。
i){U->U}なる恒等coveringはcoveringである。
ii)coveringの合成はcoveringである。
iii)covering{V_i->U}のbase change{V_i×W->W} はcoveringである。

f:T->T' なるGroten位相の射とはcat(T)からcat(T')への射で
そのTにおけるcoveringをT'におけるcoveringに移すもののことを言う。

このとき、さらにfが「Grothen位相の同値な射」であるとは、
fの任意のquasi-inverseもGroten位相の射となるものと定義されている。

これは本当に同値な概念か?

720 :132人目の素数さん:2006/12/15(金) 16:15:56
fがcategory同値なfunctorであるとき、
gがfのquasi-inverse とは、
fg〜Identity かつ gf〜Identity であることをいう。
 (ただし、〜 はfunctorの同型を意味する )

721 :132人目の素数さん:2006/12/15(金) 19:26:47
分かった。

i){U->U}なる恒等coveringはcoveringである。
ii)coveringの合成はcoveringである。

により、coveringに同型な図式は再びcoveringであるため、
「ある」のquasi-inverse g:T'->T がGroten位相の射であれば、
「任意」のquasi-inverseも、Groten位相の射となるからだ。

722 :132人目の素数さん:2006/12/16(土) 14:59:51
X:smooth projective variety
Xの有理関数体って何だろう?教えて賢い人

わからないことだらけだよorz

723 :132人目の素数さん:2006/12/16(土) 18:29:51
EGAに正確に書かれていると思う。

既約スキームの関数環は次のように定義される:
UをXのopensubschemeは包含関係の逆での順序で帰納系となるので、
それによる帰納的極限 lim Γ(U、O_x) として定義される。

724 :132人目の素数さん:2006/12/16(土) 21:09:27
>>723

それじゃわからんだろ

725 :132人目の素数さん:2006/12/20(水) 02:54:34
"smooth projective variety"がわかるのに有理関数体を知らないというのは
どういうこっちゃ・・・。どんな本読んでるの?

726 :132人目の素数さん:2007/01/19(金) 13:12:08
http://www.math.kyoto-u.ac.jp/~tetsushi/SatoTate.html
佐藤―テイト予想研究集会

727 :132人目の素数さん:2007/02/05(月) 17:24:28
562

728 :132人目の素数さん:2007/02/09(金) 14:09:34
質問です。
方冪の定理ってどんな成り行きで作られたものなのですか?

例えば、円周角の定理とか、円の内接四角形の角度に関する関係から
相似な三角形が作られて、その相似比から方冪の定理が考えられたとかですか?

729 :132人目の素数さん:2007/02/09(金) 20:02:40
スレ違い

730 :132人目の素数さん:2007/02/09(金) 20:26:26
ごめん、間違えた。
他で聞きます。

163 KB
■ このスレッドは過去ログ倉庫に格納されています

★スマホ版★ 掲示板に戻る 全部 前100 次100 最新50

read.cgi ver 05.04.00 2017/10/04 Walang Kapalit ★
FOX ★ DSO(Dynamic Shared Object)