5ちゃんねる ★スマホ版★ ■掲示板に戻る■ 全部 1- 最新50  

■ このスレッドは過去ログ倉庫に格納されています

不等式への招待 第2章

564 :560:2006/01/20(金) 23:57:21
>562
r(n) = (左辺) / (右辺) = √{7(n+1)}・C(n,[n/2]) / 2^(n+1) ≦ 140/128 を示しまつ。
r(n) = r(n-2)・n√(n^2 -1) /{4[n/2](n-[n/2])},
r(2m) = r(2m-2)・√{(2m)^2 -1} /(2m) < r(2m-2), 単調減少.
r(2m+1) = r(2m-1)・(2m+1) /√{(2m+1)^2 -1} > r(2m-1), 単調増加.
また、r(2m) = r(2m+1)・√{(2m+2)/(2m+1)} > r(2m+1) より有界なので収束する。 (*)
∴ 140/128 = r(6) > r(8) > … > r(2m) > … > √(7/2π) > … > r(2m+1) > … > r(7) > r(5) > 1.

*) 高木: 「解析概論」 改訂第三版, 岩波, p.8 (1961.5), 第T章, §4, 定理6

356 KB
■ このスレッドは過去ログ倉庫に格納されています

★スマホ版★ 掲示板に戻る 全部 前100 次100 最新50

read.cgi ver 05.04.02 2018/11/22 Walang Kapalit ★
FOX ★ DSO(Dynamic Shared Object)