5ちゃんねる ★スマホ版★ ■掲示板に戻る■ 全部 1- 最新50  

■ このスレッドは過去ログ倉庫に格納されています

不等式への招待 第2章

430 :132人目の素数さん:2005/09/17(土) 15:06:58
>426
[3073] Let x,y,z be positive real numbers. Prove that
 1/(x+y+z+1) -1/[(x+1)(y+1)(z+1)] ≦ 1/8.
and determine when there is equality.

(x+y+z)/3=A とおく。相加相乗平均より (x+1)(y+1)(z+1) ≦ (A+1)^3, 等号成立はx=y=zのとき.
(左辺) = 1/(x+y+z+1) - 1/[(x+1)(y+1)(z+1)] ≦ 1/(3A+1) -1/(A+1)^3 = (A^2)(A+3)/[(3A+1)(A+1)^3]
 = 1/8 - (A-1)^2(3A^2 +8A+1)/[8(3A+1)(A+1)^3] ≦ 1/8.
等号成立は x=y=z=1 のとき。

356 KB
■ このスレッドは過去ログ倉庫に格納されています

★スマホ版★ 掲示板に戻る 全部 前100 次100 最新50

read.cgi ver 05.04.02 2018/11/22 Walang Kapalit ★
FOX ★ DSO(Dynamic Shared Object)